Robust Model Predictive Control for Time Delayed Systems

Autores
González, Alejandro Hernán; Odloak, Darci
Año de publicación
2011
Idioma
inglés
Tipo de recurso
parte de libro
Estado
versión publicada
Descripción
Model Predictive Control (MPC) is frequently implemented as one of the layers of a control structure where a Real Time Optimization (RTO) algorithm - laying in an upper layer of this structure - defines optimal targets for some of the inputs and/or outputs (Kassmann et al., 2000). The main scope is to reach the most profitable operation of the process system while preserving safety and product specification constraints. The model predictive controller is expected to drive the plant to the optimal operating point, while minimizing the dynamic error along the input and output paths. Since in the control structure considered here the model predictive controller is designed to track the optimal targets, it is expected that for nonlinear process systems, the linear model included in the controller will become uncertain as we move from the design condition to the optimal condition. The robust MPC presented in this chapter explicitly accounts for model uncertainty of open loop stable systems, where a different model corresponds to each operating point of the process system. In this way, even in the presence of model uncertainty, the controller is capable of maintaining all outputs within feasible zones, while reaching the desired optimal targets. In several other process systems, the aim of the MPC layer is not to guide all the controlled variables to optimal targets, but only to maintain them inside appropriate ranges or zones. This strategy is designated as zone control (Maciejowski, 2002). The zone control may be adopted in some systems, where there are highly correlated outputs to be controlled, and there not enough inputs to control all the outputs. Another class of zone control problems relates to using the surge capacity of tanks to smooth out the operation of a process unit. In this case, it is desired to let the level of the tank to float between limits, as necessary, to buffer disturbances between sections of a plant. The paper by Qin and Badgwell (2003), which surveys the existing industrial MPC technology, describes a variety of industrial controllers and mention that they always provide a zone control option. Other example of zone control can be found in Zanin et al, (2002), where the authors exemplify the application of this strategy in the real time optimization of a FCC system. Although this strategy shows to have an acceptable performance, stability is not usually proved, even when an infinite horizon is used, since the control system keeps switching from one controller to another throughout the continuous operation of the process. There are several research works that treat the problem of how to obtain a stable MPC with fixed output set points. Although stability of the closed loop is commonly achieved by means of an infinite prediction horizon, the problem of how to eliminate output steady state offset when a supervisory layer produces optimal economic set points, and how to explicitly incorporate the model uncertainty into the control problem formulation for this case, remain an open issue. For the nominal model case, Rawlings (2000), Pannochia and Rawlings (2003), Muske and Badgwell (2002), show how to include disturbance models in order to assure that the inputs and states are led to the desired values without offset. Muske and Badgwell (2002) and Pannochia and Rawlings (2003) develop rank conditions to assure the detectability of the augmented model. For the uncertain system, Odloak (2004) develops a robust MPC for the multi-plant uncertainty (that is, for a finite set of possible models) that uses a non-increasing cost constraint (Badgwell, 1997). In this strategy, the MPC cost function to be minimized is computed using a nominal model, but the non-increasing cost constraint is settled for each of the models belonging to the set. The stability is then achieved by means of the recursive feasibility of the optimization problem, instead of the optimality. On the other hand, there exist some recent MPC formulations that are based on the existence of a control Lyapunov function (CLF), which is independent of the control cost function. Although the construction of the CFL may not be a trivial task, these formulations also allow the explicit characterization of the stability region subject to constraints and they do not need an infinite output horizon. Mashkar et al. (2006) explore this approach for the control of nominal nonlinear systems, and Mashkar (2006) extends the approach for the case of model uncertainty and control actuator fault. More recently, González et al. (2009) extended the infinite horizon approach to stabilize the closed loop with the MPC controller for the case of multi-model uncertainty and optimizing targets. They developed a robust MPC by adapting the non-increasing cost constraint strategy to the case of zone control of the outputs and it is desirable to guide some of the manipulated inputs to the targets given by a supervisory stationary optimization stage, while maintaining the controlled output in their corresponding zones, taking into account a finite set of possible models. This problem, that seems to interchange an output tracking by an input-tracking formulation, is not trivial, since once the output lies outside the corresponding zone (because of a disturbance, or a change in the output zones), the priority of the controller is again to control the outputs, even if this implies that the input must be settled apart from its targets. Since in many process systems, mainly from the chemical and petrochemical industries, the process model shows significant time delays, the main contribution of this chapter is to extend the approach of González et al. (2009) to the case of input delayed multi-model systems by introducing minor modifications in the state space model, in such a way that the structure of the control algorithm is preserved. Simulation of a process system of the oil refining industry illustrates the performance of the proposed strategy.
Fil: González, Alejandro Hernán. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Desarrollo Tecnológico para la Industria Química. Universidad Nacional del Litoral. Instituto de Desarrollo Tecnológico para la Industria Química; Argentina
Fil: Odloak, Darci. Universidade de Sao Paulo; Brasil
Materia
MODEL PREDICTIVE CONTROL
ROBUST CONTROL
TIME DELAYED SYSTEMS
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/110777

id CONICETDig_8edc80b4e4a974809f8c6430b15e0b22
oai_identifier_str oai:ri.conicet.gov.ar:11336/110777
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling Robust Model Predictive Control for Time Delayed SystemsGonzález, Alejandro HernánOdloak, DarciMODEL PREDICTIVE CONTROLROBUST CONTROLTIME DELAYED SYSTEMShttps://purl.org/becyt/ford/2.4https://purl.org/becyt/ford/2Model Predictive Control (MPC) is frequently implemented as one of the layers of a control structure where a Real Time Optimization (RTO) algorithm - laying in an upper layer of this structure - defines optimal targets for some of the inputs and/or outputs (Kassmann et al., 2000). The main scope is to reach the most profitable operation of the process system while preserving safety and product specification constraints. The model predictive controller is expected to drive the plant to the optimal operating point, while minimizing the dynamic error along the input and output paths. Since in the control structure considered here the model predictive controller is designed to track the optimal targets, it is expected that for nonlinear process systems, the linear model included in the controller will become uncertain as we move from the design condition to the optimal condition. The robust MPC presented in this chapter explicitly accounts for model uncertainty of open loop stable systems, where a different model corresponds to each operating point of the process system. In this way, even in the presence of model uncertainty, the controller is capable of maintaining all outputs within feasible zones, while reaching the desired optimal targets. In several other process systems, the aim of the MPC layer is not to guide all the controlled variables to optimal targets, but only to maintain them inside appropriate ranges or zones. This strategy is designated as zone control (Maciejowski, 2002). The zone control may be adopted in some systems, where there are highly correlated outputs to be controlled, and there not enough inputs to control all the outputs. Another class of zone control problems relates to using the surge capacity of tanks to smooth out the operation of a process unit. In this case, it is desired to let the level of the tank to float between limits, as necessary, to buffer disturbances between sections of a plant. The paper by Qin and Badgwell (2003), which surveys the existing industrial MPC technology, describes a variety of industrial controllers and mention that they always provide a zone control option. Other example of zone control can be found in Zanin et al, (2002), where the authors exemplify the application of this strategy in the real time optimization of a FCC system. Although this strategy shows to have an acceptable performance, stability is not usually proved, even when an infinite horizon is used, since the control system keeps switching from one controller to another throughout the continuous operation of the process. There are several research works that treat the problem of how to obtain a stable MPC with fixed output set points. Although stability of the closed loop is commonly achieved by means of an infinite prediction horizon, the problem of how to eliminate output steady state offset when a supervisory layer produces optimal economic set points, and how to explicitly incorporate the model uncertainty into the control problem formulation for this case, remain an open issue. For the nominal model case, Rawlings (2000), Pannochia and Rawlings (2003), Muske and Badgwell (2002), show how to include disturbance models in order to assure that the inputs and states are led to the desired values without offset. Muske and Badgwell (2002) and Pannochia and Rawlings (2003) develop rank conditions to assure the detectability of the augmented model. For the uncertain system, Odloak (2004) develops a robust MPC for the multi-plant uncertainty (that is, for a finite set of possible models) that uses a non-increasing cost constraint (Badgwell, 1997). In this strategy, the MPC cost function to be minimized is computed using a nominal model, but the non-increasing cost constraint is settled for each of the models belonging to the set. The stability is then achieved by means of the recursive feasibility of the optimization problem, instead of the optimality. On the other hand, there exist some recent MPC formulations that are based on the existence of a control Lyapunov function (CLF), which is independent of the control cost function. Although the construction of the CFL may not be a trivial task, these formulations also allow the explicit characterization of the stability region subject to constraints and they do not need an infinite output horizon. Mashkar et al. (2006) explore this approach for the control of nominal nonlinear systems, and Mashkar (2006) extends the approach for the case of model uncertainty and control actuator fault. More recently, González et al. (2009) extended the infinite horizon approach to stabilize the closed loop with the MPC controller for the case of multi-model uncertainty and optimizing targets. They developed a robust MPC by adapting the non-increasing cost constraint strategy to the case of zone control of the outputs and it is desirable to guide some of the manipulated inputs to the targets given by a supervisory stationary optimization stage, while maintaining the controlled output in their corresponding zones, taking into account a finite set of possible models. This problem, that seems to interchange an output tracking by an input-tracking formulation, is not trivial, since once the output lies outside the corresponding zone (because of a disturbance, or a change in the output zones), the priority of the controller is again to control the outputs, even if this implies that the input must be settled apart from its targets. Since in many process systems, mainly from the chemical and petrochemical industries, the process model shows significant time delays, the main contribution of this chapter is to extend the approach of González et al. (2009) to the case of input delayed multi-model systems by introducing minor modifications in the state space model, in such a way that the structure of the control algorithm is preserved. Simulation of a process system of the oil refining industry illustrates the performance of the proposed strategy.Fil: González, Alejandro Hernán. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Desarrollo Tecnológico para la Industria Química. Universidad Nacional del Litoral. Instituto de Desarrollo Tecnológico para la Industria Química; ArgentinaFil: Odloak, Darci. Universidade de Sao Paulo; BrasilIntechOpenBartoszewicz, Andrzej2011info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/bookParthttp://purl.org/coar/resource_type/c_3248info:ar-repo/semantics/parteDeLibroapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/110777González, Alejandro Hernán; Odloak, Darci; Robust Model Predictive Control for Time Delayed Systems; IntechOpen; 2011; 339-370978-953-307-229-6CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/https://www.intechopen.com/chapters/15040info:eu-repo/semantics/altIdentifier/doi/10.5772/15039info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-03T09:47:35Zoai:ri.conicet.gov.ar:11336/110777instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-03 09:47:35.944CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv Robust Model Predictive Control for Time Delayed Systems
title Robust Model Predictive Control for Time Delayed Systems
spellingShingle Robust Model Predictive Control for Time Delayed Systems
González, Alejandro Hernán
MODEL PREDICTIVE CONTROL
ROBUST CONTROL
TIME DELAYED SYSTEMS
title_short Robust Model Predictive Control for Time Delayed Systems
title_full Robust Model Predictive Control for Time Delayed Systems
title_fullStr Robust Model Predictive Control for Time Delayed Systems
title_full_unstemmed Robust Model Predictive Control for Time Delayed Systems
title_sort Robust Model Predictive Control for Time Delayed Systems
dc.creator.none.fl_str_mv González, Alejandro Hernán
Odloak, Darci
author González, Alejandro Hernán
author_facet González, Alejandro Hernán
Odloak, Darci
author_role author
author2 Odloak, Darci
author2_role author
dc.contributor.none.fl_str_mv Bartoszewicz, Andrzej
dc.subject.none.fl_str_mv MODEL PREDICTIVE CONTROL
ROBUST CONTROL
TIME DELAYED SYSTEMS
topic MODEL PREDICTIVE CONTROL
ROBUST CONTROL
TIME DELAYED SYSTEMS
purl_subject.fl_str_mv https://purl.org/becyt/ford/2.4
https://purl.org/becyt/ford/2
dc.description.none.fl_txt_mv Model Predictive Control (MPC) is frequently implemented as one of the layers of a control structure where a Real Time Optimization (RTO) algorithm - laying in an upper layer of this structure - defines optimal targets for some of the inputs and/or outputs (Kassmann et al., 2000). The main scope is to reach the most profitable operation of the process system while preserving safety and product specification constraints. The model predictive controller is expected to drive the plant to the optimal operating point, while minimizing the dynamic error along the input and output paths. Since in the control structure considered here the model predictive controller is designed to track the optimal targets, it is expected that for nonlinear process systems, the linear model included in the controller will become uncertain as we move from the design condition to the optimal condition. The robust MPC presented in this chapter explicitly accounts for model uncertainty of open loop stable systems, where a different model corresponds to each operating point of the process system. In this way, even in the presence of model uncertainty, the controller is capable of maintaining all outputs within feasible zones, while reaching the desired optimal targets. In several other process systems, the aim of the MPC layer is not to guide all the controlled variables to optimal targets, but only to maintain them inside appropriate ranges or zones. This strategy is designated as zone control (Maciejowski, 2002). The zone control may be adopted in some systems, where there are highly correlated outputs to be controlled, and there not enough inputs to control all the outputs. Another class of zone control problems relates to using the surge capacity of tanks to smooth out the operation of a process unit. In this case, it is desired to let the level of the tank to float between limits, as necessary, to buffer disturbances between sections of a plant. The paper by Qin and Badgwell (2003), which surveys the existing industrial MPC technology, describes a variety of industrial controllers and mention that they always provide a zone control option. Other example of zone control can be found in Zanin et al, (2002), where the authors exemplify the application of this strategy in the real time optimization of a FCC system. Although this strategy shows to have an acceptable performance, stability is not usually proved, even when an infinite horizon is used, since the control system keeps switching from one controller to another throughout the continuous operation of the process. There are several research works that treat the problem of how to obtain a stable MPC with fixed output set points. Although stability of the closed loop is commonly achieved by means of an infinite prediction horizon, the problem of how to eliminate output steady state offset when a supervisory layer produces optimal economic set points, and how to explicitly incorporate the model uncertainty into the control problem formulation for this case, remain an open issue. For the nominal model case, Rawlings (2000), Pannochia and Rawlings (2003), Muske and Badgwell (2002), show how to include disturbance models in order to assure that the inputs and states are led to the desired values without offset. Muske and Badgwell (2002) and Pannochia and Rawlings (2003) develop rank conditions to assure the detectability of the augmented model. For the uncertain system, Odloak (2004) develops a robust MPC for the multi-plant uncertainty (that is, for a finite set of possible models) that uses a non-increasing cost constraint (Badgwell, 1997). In this strategy, the MPC cost function to be minimized is computed using a nominal model, but the non-increasing cost constraint is settled for each of the models belonging to the set. The stability is then achieved by means of the recursive feasibility of the optimization problem, instead of the optimality. On the other hand, there exist some recent MPC formulations that are based on the existence of a control Lyapunov function (CLF), which is independent of the control cost function. Although the construction of the CFL may not be a trivial task, these formulations also allow the explicit characterization of the stability region subject to constraints and they do not need an infinite output horizon. Mashkar et al. (2006) explore this approach for the control of nominal nonlinear systems, and Mashkar (2006) extends the approach for the case of model uncertainty and control actuator fault. More recently, González et al. (2009) extended the infinite horizon approach to stabilize the closed loop with the MPC controller for the case of multi-model uncertainty and optimizing targets. They developed a robust MPC by adapting the non-increasing cost constraint strategy to the case of zone control of the outputs and it is desirable to guide some of the manipulated inputs to the targets given by a supervisory stationary optimization stage, while maintaining the controlled output in their corresponding zones, taking into account a finite set of possible models. This problem, that seems to interchange an output tracking by an input-tracking formulation, is not trivial, since once the output lies outside the corresponding zone (because of a disturbance, or a change in the output zones), the priority of the controller is again to control the outputs, even if this implies that the input must be settled apart from its targets. Since in many process systems, mainly from the chemical and petrochemical industries, the process model shows significant time delays, the main contribution of this chapter is to extend the approach of González et al. (2009) to the case of input delayed multi-model systems by introducing minor modifications in the state space model, in such a way that the structure of the control algorithm is preserved. Simulation of a process system of the oil refining industry illustrates the performance of the proposed strategy.
Fil: González, Alejandro Hernán. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Desarrollo Tecnológico para la Industria Química. Universidad Nacional del Litoral. Instituto de Desarrollo Tecnológico para la Industria Química; Argentina
Fil: Odloak, Darci. Universidade de Sao Paulo; Brasil
description Model Predictive Control (MPC) is frequently implemented as one of the layers of a control structure where a Real Time Optimization (RTO) algorithm - laying in an upper layer of this structure - defines optimal targets for some of the inputs and/or outputs (Kassmann et al., 2000). The main scope is to reach the most profitable operation of the process system while preserving safety and product specification constraints. The model predictive controller is expected to drive the plant to the optimal operating point, while minimizing the dynamic error along the input and output paths. Since in the control structure considered here the model predictive controller is designed to track the optimal targets, it is expected that for nonlinear process systems, the linear model included in the controller will become uncertain as we move from the design condition to the optimal condition. The robust MPC presented in this chapter explicitly accounts for model uncertainty of open loop stable systems, where a different model corresponds to each operating point of the process system. In this way, even in the presence of model uncertainty, the controller is capable of maintaining all outputs within feasible zones, while reaching the desired optimal targets. In several other process systems, the aim of the MPC layer is not to guide all the controlled variables to optimal targets, but only to maintain them inside appropriate ranges or zones. This strategy is designated as zone control (Maciejowski, 2002). The zone control may be adopted in some systems, where there are highly correlated outputs to be controlled, and there not enough inputs to control all the outputs. Another class of zone control problems relates to using the surge capacity of tanks to smooth out the operation of a process unit. In this case, it is desired to let the level of the tank to float between limits, as necessary, to buffer disturbances between sections of a plant. The paper by Qin and Badgwell (2003), which surveys the existing industrial MPC technology, describes a variety of industrial controllers and mention that they always provide a zone control option. Other example of zone control can be found in Zanin et al, (2002), where the authors exemplify the application of this strategy in the real time optimization of a FCC system. Although this strategy shows to have an acceptable performance, stability is not usually proved, even when an infinite horizon is used, since the control system keeps switching from one controller to another throughout the continuous operation of the process. There are several research works that treat the problem of how to obtain a stable MPC with fixed output set points. Although stability of the closed loop is commonly achieved by means of an infinite prediction horizon, the problem of how to eliminate output steady state offset when a supervisory layer produces optimal economic set points, and how to explicitly incorporate the model uncertainty into the control problem formulation for this case, remain an open issue. For the nominal model case, Rawlings (2000), Pannochia and Rawlings (2003), Muske and Badgwell (2002), show how to include disturbance models in order to assure that the inputs and states are led to the desired values without offset. Muske and Badgwell (2002) and Pannochia and Rawlings (2003) develop rank conditions to assure the detectability of the augmented model. For the uncertain system, Odloak (2004) develops a robust MPC for the multi-plant uncertainty (that is, for a finite set of possible models) that uses a non-increasing cost constraint (Badgwell, 1997). In this strategy, the MPC cost function to be minimized is computed using a nominal model, but the non-increasing cost constraint is settled for each of the models belonging to the set. The stability is then achieved by means of the recursive feasibility of the optimization problem, instead of the optimality. On the other hand, there exist some recent MPC formulations that are based on the existence of a control Lyapunov function (CLF), which is independent of the control cost function. Although the construction of the CFL may not be a trivial task, these formulations also allow the explicit characterization of the stability region subject to constraints and they do not need an infinite output horizon. Mashkar et al. (2006) explore this approach for the control of nominal nonlinear systems, and Mashkar (2006) extends the approach for the case of model uncertainty and control actuator fault. More recently, González et al. (2009) extended the infinite horizon approach to stabilize the closed loop with the MPC controller for the case of multi-model uncertainty and optimizing targets. They developed a robust MPC by adapting the non-increasing cost constraint strategy to the case of zone control of the outputs and it is desirable to guide some of the manipulated inputs to the targets given by a supervisory stationary optimization stage, while maintaining the controlled output in their corresponding zones, taking into account a finite set of possible models. This problem, that seems to interchange an output tracking by an input-tracking formulation, is not trivial, since once the output lies outside the corresponding zone (because of a disturbance, or a change in the output zones), the priority of the controller is again to control the outputs, even if this implies that the input must be settled apart from its targets. Since in many process systems, mainly from the chemical and petrochemical industries, the process model shows significant time delays, the main contribution of this chapter is to extend the approach of González et al. (2009) to the case of input delayed multi-model systems by introducing minor modifications in the state space model, in such a way that the structure of the control algorithm is preserved. Simulation of a process system of the oil refining industry illustrates the performance of the proposed strategy.
publishDate 2011
dc.date.none.fl_str_mv 2011
dc.type.none.fl_str_mv info:eu-repo/semantics/publishedVersion
info:eu-repo/semantics/bookPart
http://purl.org/coar/resource_type/c_3248
info:ar-repo/semantics/parteDeLibro
status_str publishedVersion
format bookPart
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/110777
González, Alejandro Hernán; Odloak, Darci; Robust Model Predictive Control for Time Delayed Systems; IntechOpen; 2011; 339-370
978-953-307-229-6
CONICET Digital
CONICET
url http://hdl.handle.net/11336/110777
identifier_str_mv González, Alejandro Hernán; Odloak, Darci; Robust Model Predictive Control for Time Delayed Systems; IntechOpen; 2011; 339-370
978-953-307-229-6
CONICET Digital
CONICET
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/url/https://www.intechopen.com/chapters/15040
info:eu-repo/semantics/altIdentifier/doi/10.5772/15039
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
application/pdf
dc.publisher.none.fl_str_mv IntechOpen
publisher.none.fl_str_mv IntechOpen
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1842268869933137920
score 13.13397