Forecasting Multiple Time Series With One-Sided Dynamic Principal Components
- Autores
- Peña, Daniel; Smucler, Ezequiel; Yohai, Victor Jaime
- Año de publicación
- 2019
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- We define one-sided dynamic principal components (ODPC) for time series as linear combinations of the present and past values of the series that minimize the reconstruction mean squared error. Usually dynamic principal components have been defined as functions of past and future values of the series and therefore they are not appropriate for forecasting purposes. On the contrary, it is shown that the ODPC introduced in this article can be successfully used for forecasting high-dimensional multiple time series. An alternating least-squares algorithm to compute the proposed ODPC is presented. We prove that for stationary and ergodic time series the estimated values converge to their population analogs. We also prove that asymptotically, when both the number of series and the sample size go to infinity, if the data follow a dynamic factor model, the reconstruction obtained with ODPC converges in mean square to the common part of the factor model. The results of a simulation study show that the forecasts obtained with ODPC compare favorably with those obtained using other forecasting methods based on dynamic factor models.
Fil: Peña, Daniel. Universidad Carlos III de Madrid. Instituto de Salud; España
Fil: Smucler, Ezequiel. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Cálculo; Argentina
Fil: Yohai, Victor Jaime. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Cálculo; Argentina. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Matemática; Argentina - Materia
-
DIMENSIONALITY REDUCTION
DYNAMIC FACTOR MODELS
HIGH-DIMENSIONAL TIME SERIES - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/92383
Ver los metadatos del registro completo
id |
CONICETDig_92cc2a9813372b9dbedfb452426c8fae |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/92383 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Forecasting Multiple Time Series With One-Sided Dynamic Principal ComponentsPeña, DanielSmucler, EzequielYohai, Victor JaimeDIMENSIONALITY REDUCTIONDYNAMIC FACTOR MODELSHIGH-DIMENSIONAL TIME SERIEShttps://purl.org/becyt/ford/1.1https://purl.org/becyt/ford/1We define one-sided dynamic principal components (ODPC) for time series as linear combinations of the present and past values of the series that minimize the reconstruction mean squared error. Usually dynamic principal components have been defined as functions of past and future values of the series and therefore they are not appropriate for forecasting purposes. On the contrary, it is shown that the ODPC introduced in this article can be successfully used for forecasting high-dimensional multiple time series. An alternating least-squares algorithm to compute the proposed ODPC is presented. We prove that for stationary and ergodic time series the estimated values converge to their population analogs. We also prove that asymptotically, when both the number of series and the sample size go to infinity, if the data follow a dynamic factor model, the reconstruction obtained with ODPC converges in mean square to the common part of the factor model. The results of a simulation study show that the forecasts obtained with ODPC compare favorably with those obtained using other forecasting methods based on dynamic factor models.Fil: Peña, Daniel. Universidad Carlos III de Madrid. Instituto de Salud; EspañaFil: Smucler, Ezequiel. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Cálculo; ArgentinaFil: Yohai, Victor Jaime. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Cálculo; Argentina. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Matemática; ArgentinaAmerican Statistical Association2019-02info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/92383Peña, Daniel; Smucler, Ezequiel; Yohai, Victor Jaime; Forecasting Multiple Time Series With One-Sided Dynamic Principal Components; American Statistical Association; Journal of The American Statistical Association; 2-2019; 1-430162-1459CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/https://www.tandfonline.com/doi/full/10.1080/01621459.2018.1520117info:eu-repo/semantics/altIdentifier/doi/10.1080/01621459.2018.1520117info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-10-15T15:10:13Zoai:ri.conicet.gov.ar:11336/92383instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-10-15 15:10:13.802CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Forecasting Multiple Time Series With One-Sided Dynamic Principal Components |
title |
Forecasting Multiple Time Series With One-Sided Dynamic Principal Components |
spellingShingle |
Forecasting Multiple Time Series With One-Sided Dynamic Principal Components Peña, Daniel DIMENSIONALITY REDUCTION DYNAMIC FACTOR MODELS HIGH-DIMENSIONAL TIME SERIES |
title_short |
Forecasting Multiple Time Series With One-Sided Dynamic Principal Components |
title_full |
Forecasting Multiple Time Series With One-Sided Dynamic Principal Components |
title_fullStr |
Forecasting Multiple Time Series With One-Sided Dynamic Principal Components |
title_full_unstemmed |
Forecasting Multiple Time Series With One-Sided Dynamic Principal Components |
title_sort |
Forecasting Multiple Time Series With One-Sided Dynamic Principal Components |
dc.creator.none.fl_str_mv |
Peña, Daniel Smucler, Ezequiel Yohai, Victor Jaime |
author |
Peña, Daniel |
author_facet |
Peña, Daniel Smucler, Ezequiel Yohai, Victor Jaime |
author_role |
author |
author2 |
Smucler, Ezequiel Yohai, Victor Jaime |
author2_role |
author author |
dc.subject.none.fl_str_mv |
DIMENSIONALITY REDUCTION DYNAMIC FACTOR MODELS HIGH-DIMENSIONAL TIME SERIES |
topic |
DIMENSIONALITY REDUCTION DYNAMIC FACTOR MODELS HIGH-DIMENSIONAL TIME SERIES |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.1 https://purl.org/becyt/ford/1 |
dc.description.none.fl_txt_mv |
We define one-sided dynamic principal components (ODPC) for time series as linear combinations of the present and past values of the series that minimize the reconstruction mean squared error. Usually dynamic principal components have been defined as functions of past and future values of the series and therefore they are not appropriate for forecasting purposes. On the contrary, it is shown that the ODPC introduced in this article can be successfully used for forecasting high-dimensional multiple time series. An alternating least-squares algorithm to compute the proposed ODPC is presented. We prove that for stationary and ergodic time series the estimated values converge to their population analogs. We also prove that asymptotically, when both the number of series and the sample size go to infinity, if the data follow a dynamic factor model, the reconstruction obtained with ODPC converges in mean square to the common part of the factor model. The results of a simulation study show that the forecasts obtained with ODPC compare favorably with those obtained using other forecasting methods based on dynamic factor models. Fil: Peña, Daniel. Universidad Carlos III de Madrid. Instituto de Salud; España Fil: Smucler, Ezequiel. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Cálculo; Argentina Fil: Yohai, Victor Jaime. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Cálculo; Argentina. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Matemática; Argentina |
description |
We define one-sided dynamic principal components (ODPC) for time series as linear combinations of the present and past values of the series that minimize the reconstruction mean squared error. Usually dynamic principal components have been defined as functions of past and future values of the series and therefore they are not appropriate for forecasting purposes. On the contrary, it is shown that the ODPC introduced in this article can be successfully used for forecasting high-dimensional multiple time series. An alternating least-squares algorithm to compute the proposed ODPC is presented. We prove that for stationary and ergodic time series the estimated values converge to their population analogs. We also prove that asymptotically, when both the number of series and the sample size go to infinity, if the data follow a dynamic factor model, the reconstruction obtained with ODPC converges in mean square to the common part of the factor model. The results of a simulation study show that the forecasts obtained with ODPC compare favorably with those obtained using other forecasting methods based on dynamic factor models. |
publishDate |
2019 |
dc.date.none.fl_str_mv |
2019-02 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/92383 Peña, Daniel; Smucler, Ezequiel; Yohai, Victor Jaime; Forecasting Multiple Time Series With One-Sided Dynamic Principal Components; American Statistical Association; Journal of The American Statistical Association; 2-2019; 1-43 0162-1459 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/92383 |
identifier_str_mv |
Peña, Daniel; Smucler, Ezequiel; Yohai, Victor Jaime; Forecasting Multiple Time Series With One-Sided Dynamic Principal Components; American Statistical Association; Journal of The American Statistical Association; 2-2019; 1-43 0162-1459 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/url/https://www.tandfonline.com/doi/full/10.1080/01621459.2018.1520117 info:eu-repo/semantics/altIdentifier/doi/10.1080/01621459.2018.1520117 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
American Statistical Association |
publisher.none.fl_str_mv |
American Statistical Association |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1846083250836996096 |
score |
13.22299 |