Dimensionality reduction for visualization of normal and pathological speech data

Autores
Goddard, J.; Schlotthauer, Gaston; Torres, Maria Eugenia; Rufiner, Hugo Leonardo
Año de publicación
2009
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
For an adequate analysis of pathological speech signals, a sizeable number of parameters is required, such as those related to jitter, shimmer and noise content. Often this kind of high-dimensional signal representation is difficult to understand, even for expert voice therapists and physicians. Data visualization of a high-dimensional dataset can provide a useful first step in its exploratory data analysis, facilitating an understanding about its underlying structure. In the present paper, eight dimensionality reduction techniques, both classical and recent, are compared on speech data containing normal and pathological speech. A qualitative analysis of their dimensionality reduction capabilities is presented. The transformed data are also quantitatively evaluated, using classifiers, and it is found that it may be advantageous to perform the classification process on the transformed data, rather than on the original. These qualitative and quantitative analyses allow us to conclude that a nonlinear, supervised method, called kernel local Fisher discriminant analysis is superior for dimensionality reduction in the actual context.
Fil: Goddard, J.. Universidad Autónoma Metropolitana; México
Fil: Schlotthauer, Gaston. Universidad Nacional de Entre Ríos. Facultad de Ingeniería. Departamento de Matemática e Informática. Laboratorio de Señales y Dinámicas no Lineales; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
Fil: Torres, Maria Eugenia. Universidad Nacional del Litoral. Facultad de Ingeniería y Ciencias Hídricas; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad Nacional de Entre Ríos. Facultad de Ingeniería. Departamento de Matemática e Informática. Laboratorio de Señales y Dinámicas no Lineales; Argentina
Fil: Rufiner, Hugo Leonardo. Universidad Nacional del Litoral. Facultad de Ingeniería y Ciencias Hídricas. Departamento de Informática. Laboratorio de Investigaciones en Señales e Inteligencia Computacional; Argentina. Universidad Nacional del Litoral. Facultad de Ingeniería y Ciencias Hídricas; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
Materia
DATA VISUALIZATION
DIMENSIONALITY REDUCTION
KERNEL METHODS
PATHOLOGICAL VOICE ANALYSIS
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/97938

id CONICETDig_50e84534368b55520fcaefee7c83ccde
oai_identifier_str oai:ri.conicet.gov.ar:11336/97938
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling Dimensionality reduction for visualization of normal and pathological speech dataGoddard, J.Schlotthauer, GastonTorres, Maria EugeniaRufiner, Hugo LeonardoDATA VISUALIZATIONDIMENSIONALITY REDUCTIONKERNEL METHODSPATHOLOGICAL VOICE ANALYSIShttps://purl.org/becyt/ford/2.11https://purl.org/becyt/ford/2For an adequate analysis of pathological speech signals, a sizeable number of parameters is required, such as those related to jitter, shimmer and noise content. Often this kind of high-dimensional signal representation is difficult to understand, even for expert voice therapists and physicians. Data visualization of a high-dimensional dataset can provide a useful first step in its exploratory data analysis, facilitating an understanding about its underlying structure. In the present paper, eight dimensionality reduction techniques, both classical and recent, are compared on speech data containing normal and pathological speech. A qualitative analysis of their dimensionality reduction capabilities is presented. The transformed data are also quantitatively evaluated, using classifiers, and it is found that it may be advantageous to perform the classification process on the transformed data, rather than on the original. These qualitative and quantitative analyses allow us to conclude that a nonlinear, supervised method, called kernel local Fisher discriminant analysis is superior for dimensionality reduction in the actual context.Fil: Goddard, J.. Universidad Autónoma Metropolitana; MéxicoFil: Schlotthauer, Gaston. Universidad Nacional de Entre Ríos. Facultad de Ingeniería. Departamento de Matemática e Informática. Laboratorio de Señales y Dinámicas no Lineales; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Torres, Maria Eugenia. Universidad Nacional del Litoral. Facultad de Ingeniería y Ciencias Hídricas; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad Nacional de Entre Ríos. Facultad de Ingeniería. Departamento de Matemática e Informática. Laboratorio de Señales y Dinámicas no Lineales; ArgentinaFil: Rufiner, Hugo Leonardo. Universidad Nacional del Litoral. Facultad de Ingeniería y Ciencias Hídricas. Departamento de Informática. Laboratorio de Investigaciones en Señales e Inteligencia Computacional; Argentina. Universidad Nacional del Litoral. Facultad de Ingeniería y Ciencias Hídricas; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaElsevier2009-07info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/97938Goddard, J.; Schlotthauer, Gaston; Torres, Maria Eugenia; Rufiner, Hugo Leonardo; Dimensionality reduction for visualization of normal and pathological speech data; Elsevier; Biomedical Signal Processing and Control; 4; 3; 7-2009; 194-2011746-8094CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/https://www.sciencedirect.com/science/article/pii/S1746809409000020info:eu-repo/semantics/altIdentifier/doi/10.1016/j.bspc.2009.01.001info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T10:30:30Zoai:ri.conicet.gov.ar:11336/97938instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 10:30:30.596CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv Dimensionality reduction for visualization of normal and pathological speech data
title Dimensionality reduction for visualization of normal and pathological speech data
spellingShingle Dimensionality reduction for visualization of normal and pathological speech data
Goddard, J.
DATA VISUALIZATION
DIMENSIONALITY REDUCTION
KERNEL METHODS
PATHOLOGICAL VOICE ANALYSIS
title_short Dimensionality reduction for visualization of normal and pathological speech data
title_full Dimensionality reduction for visualization of normal and pathological speech data
title_fullStr Dimensionality reduction for visualization of normal and pathological speech data
title_full_unstemmed Dimensionality reduction for visualization of normal and pathological speech data
title_sort Dimensionality reduction for visualization of normal and pathological speech data
dc.creator.none.fl_str_mv Goddard, J.
Schlotthauer, Gaston
Torres, Maria Eugenia
Rufiner, Hugo Leonardo
author Goddard, J.
author_facet Goddard, J.
Schlotthauer, Gaston
Torres, Maria Eugenia
Rufiner, Hugo Leonardo
author_role author
author2 Schlotthauer, Gaston
Torres, Maria Eugenia
Rufiner, Hugo Leonardo
author2_role author
author
author
dc.subject.none.fl_str_mv DATA VISUALIZATION
DIMENSIONALITY REDUCTION
KERNEL METHODS
PATHOLOGICAL VOICE ANALYSIS
topic DATA VISUALIZATION
DIMENSIONALITY REDUCTION
KERNEL METHODS
PATHOLOGICAL VOICE ANALYSIS
purl_subject.fl_str_mv https://purl.org/becyt/ford/2.11
https://purl.org/becyt/ford/2
dc.description.none.fl_txt_mv For an adequate analysis of pathological speech signals, a sizeable number of parameters is required, such as those related to jitter, shimmer and noise content. Often this kind of high-dimensional signal representation is difficult to understand, even for expert voice therapists and physicians. Data visualization of a high-dimensional dataset can provide a useful first step in its exploratory data analysis, facilitating an understanding about its underlying structure. In the present paper, eight dimensionality reduction techniques, both classical and recent, are compared on speech data containing normal and pathological speech. A qualitative analysis of their dimensionality reduction capabilities is presented. The transformed data are also quantitatively evaluated, using classifiers, and it is found that it may be advantageous to perform the classification process on the transformed data, rather than on the original. These qualitative and quantitative analyses allow us to conclude that a nonlinear, supervised method, called kernel local Fisher discriminant analysis is superior for dimensionality reduction in the actual context.
Fil: Goddard, J.. Universidad Autónoma Metropolitana; México
Fil: Schlotthauer, Gaston. Universidad Nacional de Entre Ríos. Facultad de Ingeniería. Departamento de Matemática e Informática. Laboratorio de Señales y Dinámicas no Lineales; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
Fil: Torres, Maria Eugenia. Universidad Nacional del Litoral. Facultad de Ingeniería y Ciencias Hídricas; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad Nacional de Entre Ríos. Facultad de Ingeniería. Departamento de Matemática e Informática. Laboratorio de Señales y Dinámicas no Lineales; Argentina
Fil: Rufiner, Hugo Leonardo. Universidad Nacional del Litoral. Facultad de Ingeniería y Ciencias Hídricas. Departamento de Informática. Laboratorio de Investigaciones en Señales e Inteligencia Computacional; Argentina. Universidad Nacional del Litoral. Facultad de Ingeniería y Ciencias Hídricas; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
description For an adequate analysis of pathological speech signals, a sizeable number of parameters is required, such as those related to jitter, shimmer and noise content. Often this kind of high-dimensional signal representation is difficult to understand, even for expert voice therapists and physicians. Data visualization of a high-dimensional dataset can provide a useful first step in its exploratory data analysis, facilitating an understanding about its underlying structure. In the present paper, eight dimensionality reduction techniques, both classical and recent, are compared on speech data containing normal and pathological speech. A qualitative analysis of their dimensionality reduction capabilities is presented. The transformed data are also quantitatively evaluated, using classifiers, and it is found that it may be advantageous to perform the classification process on the transformed data, rather than on the original. These qualitative and quantitative analyses allow us to conclude that a nonlinear, supervised method, called kernel local Fisher discriminant analysis is superior for dimensionality reduction in the actual context.
publishDate 2009
dc.date.none.fl_str_mv 2009-07
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/97938
Goddard, J.; Schlotthauer, Gaston; Torres, Maria Eugenia; Rufiner, Hugo Leonardo; Dimensionality reduction for visualization of normal and pathological speech data; Elsevier; Biomedical Signal Processing and Control; 4; 3; 7-2009; 194-201
1746-8094
CONICET Digital
CONICET
url http://hdl.handle.net/11336/97938
identifier_str_mv Goddard, J.; Schlotthauer, Gaston; Torres, Maria Eugenia; Rufiner, Hugo Leonardo; Dimensionality reduction for visualization of normal and pathological speech data; Elsevier; Biomedical Signal Processing and Control; 4; 3; 7-2009; 194-201
1746-8094
CONICET Digital
CONICET
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/url/https://www.sciencedirect.com/science/article/pii/S1746809409000020
info:eu-repo/semantics/altIdentifier/doi/10.1016/j.bspc.2009.01.001
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
application/pdf
application/pdf
dc.publisher.none.fl_str_mv Elsevier
publisher.none.fl_str_mv Elsevier
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1844614313357082624
score 13.070432