Dimensionality reduction for visualization of normal and pathological speech data
- Autores
- Goddard, J.; Schlotthauer, Gaston; Torres, Maria Eugenia; Rufiner, Hugo Leonardo
- Año de publicación
- 2009
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- For an adequate analysis of pathological speech signals, a sizeable number of parameters is required, such as those related to jitter, shimmer and noise content. Often this kind of high-dimensional signal representation is difficult to understand, even for expert voice therapists and physicians. Data visualization of a high-dimensional dataset can provide a useful first step in its exploratory data analysis, facilitating an understanding about its underlying structure. In the present paper, eight dimensionality reduction techniques, both classical and recent, are compared on speech data containing normal and pathological speech. A qualitative analysis of their dimensionality reduction capabilities is presented. The transformed data are also quantitatively evaluated, using classifiers, and it is found that it may be advantageous to perform the classification process on the transformed data, rather than on the original. These qualitative and quantitative analyses allow us to conclude that a nonlinear, supervised method, called kernel local Fisher discriminant analysis is superior for dimensionality reduction in the actual context.
Fil: Goddard, J.. Universidad Autónoma Metropolitana; México
Fil: Schlotthauer, Gaston. Universidad Nacional de Entre Ríos. Facultad de Ingeniería. Departamento de Matemática e Informática. Laboratorio de Señales y Dinámicas no Lineales; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
Fil: Torres, Maria Eugenia. Universidad Nacional del Litoral. Facultad de Ingeniería y Ciencias Hídricas; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad Nacional de Entre Ríos. Facultad de Ingeniería. Departamento de Matemática e Informática. Laboratorio de Señales y Dinámicas no Lineales; Argentina
Fil: Rufiner, Hugo Leonardo. Universidad Nacional del Litoral. Facultad de Ingeniería y Ciencias Hídricas. Departamento de Informática. Laboratorio de Investigaciones en Señales e Inteligencia Computacional; Argentina. Universidad Nacional del Litoral. Facultad de Ingeniería y Ciencias Hídricas; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina - Materia
-
DATA VISUALIZATION
DIMENSIONALITY REDUCTION
KERNEL METHODS
PATHOLOGICAL VOICE ANALYSIS - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/97938
Ver los metadatos del registro completo
id |
CONICETDig_50e84534368b55520fcaefee7c83ccde |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/97938 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Dimensionality reduction for visualization of normal and pathological speech dataGoddard, J.Schlotthauer, GastonTorres, Maria EugeniaRufiner, Hugo LeonardoDATA VISUALIZATIONDIMENSIONALITY REDUCTIONKERNEL METHODSPATHOLOGICAL VOICE ANALYSIShttps://purl.org/becyt/ford/2.11https://purl.org/becyt/ford/2For an adequate analysis of pathological speech signals, a sizeable number of parameters is required, such as those related to jitter, shimmer and noise content. Often this kind of high-dimensional signal representation is difficult to understand, even for expert voice therapists and physicians. Data visualization of a high-dimensional dataset can provide a useful first step in its exploratory data analysis, facilitating an understanding about its underlying structure. In the present paper, eight dimensionality reduction techniques, both classical and recent, are compared on speech data containing normal and pathological speech. A qualitative analysis of their dimensionality reduction capabilities is presented. The transformed data are also quantitatively evaluated, using classifiers, and it is found that it may be advantageous to perform the classification process on the transformed data, rather than on the original. These qualitative and quantitative analyses allow us to conclude that a nonlinear, supervised method, called kernel local Fisher discriminant analysis is superior for dimensionality reduction in the actual context.Fil: Goddard, J.. Universidad Autónoma Metropolitana; MéxicoFil: Schlotthauer, Gaston. Universidad Nacional de Entre Ríos. Facultad de Ingeniería. Departamento de Matemática e Informática. Laboratorio de Señales y Dinámicas no Lineales; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Torres, Maria Eugenia. Universidad Nacional del Litoral. Facultad de Ingeniería y Ciencias Hídricas; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad Nacional de Entre Ríos. Facultad de Ingeniería. Departamento de Matemática e Informática. Laboratorio de Señales y Dinámicas no Lineales; ArgentinaFil: Rufiner, Hugo Leonardo. Universidad Nacional del Litoral. Facultad de Ingeniería y Ciencias Hídricas. Departamento de Informática. Laboratorio de Investigaciones en Señales e Inteligencia Computacional; Argentina. Universidad Nacional del Litoral. Facultad de Ingeniería y Ciencias Hídricas; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaElsevier2009-07info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/97938Goddard, J.; Schlotthauer, Gaston; Torres, Maria Eugenia; Rufiner, Hugo Leonardo; Dimensionality reduction for visualization of normal and pathological speech data; Elsevier; Biomedical Signal Processing and Control; 4; 3; 7-2009; 194-2011746-8094CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/https://www.sciencedirect.com/science/article/pii/S1746809409000020info:eu-repo/semantics/altIdentifier/doi/10.1016/j.bspc.2009.01.001info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T10:30:30Zoai:ri.conicet.gov.ar:11336/97938instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 10:30:30.596CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Dimensionality reduction for visualization of normal and pathological speech data |
title |
Dimensionality reduction for visualization of normal and pathological speech data |
spellingShingle |
Dimensionality reduction for visualization of normal and pathological speech data Goddard, J. DATA VISUALIZATION DIMENSIONALITY REDUCTION KERNEL METHODS PATHOLOGICAL VOICE ANALYSIS |
title_short |
Dimensionality reduction for visualization of normal and pathological speech data |
title_full |
Dimensionality reduction for visualization of normal and pathological speech data |
title_fullStr |
Dimensionality reduction for visualization of normal and pathological speech data |
title_full_unstemmed |
Dimensionality reduction for visualization of normal and pathological speech data |
title_sort |
Dimensionality reduction for visualization of normal and pathological speech data |
dc.creator.none.fl_str_mv |
Goddard, J. Schlotthauer, Gaston Torres, Maria Eugenia Rufiner, Hugo Leonardo |
author |
Goddard, J. |
author_facet |
Goddard, J. Schlotthauer, Gaston Torres, Maria Eugenia Rufiner, Hugo Leonardo |
author_role |
author |
author2 |
Schlotthauer, Gaston Torres, Maria Eugenia Rufiner, Hugo Leonardo |
author2_role |
author author author |
dc.subject.none.fl_str_mv |
DATA VISUALIZATION DIMENSIONALITY REDUCTION KERNEL METHODS PATHOLOGICAL VOICE ANALYSIS |
topic |
DATA VISUALIZATION DIMENSIONALITY REDUCTION KERNEL METHODS PATHOLOGICAL VOICE ANALYSIS |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/2.11 https://purl.org/becyt/ford/2 |
dc.description.none.fl_txt_mv |
For an adequate analysis of pathological speech signals, a sizeable number of parameters is required, such as those related to jitter, shimmer and noise content. Often this kind of high-dimensional signal representation is difficult to understand, even for expert voice therapists and physicians. Data visualization of a high-dimensional dataset can provide a useful first step in its exploratory data analysis, facilitating an understanding about its underlying structure. In the present paper, eight dimensionality reduction techniques, both classical and recent, are compared on speech data containing normal and pathological speech. A qualitative analysis of their dimensionality reduction capabilities is presented. The transformed data are also quantitatively evaluated, using classifiers, and it is found that it may be advantageous to perform the classification process on the transformed data, rather than on the original. These qualitative and quantitative analyses allow us to conclude that a nonlinear, supervised method, called kernel local Fisher discriminant analysis is superior for dimensionality reduction in the actual context. Fil: Goddard, J.. Universidad Autónoma Metropolitana; México Fil: Schlotthauer, Gaston. Universidad Nacional de Entre Ríos. Facultad de Ingeniería. Departamento de Matemática e Informática. Laboratorio de Señales y Dinámicas no Lineales; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina Fil: Torres, Maria Eugenia. Universidad Nacional del Litoral. Facultad de Ingeniería y Ciencias Hídricas; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad Nacional de Entre Ríos. Facultad de Ingeniería. Departamento de Matemática e Informática. Laboratorio de Señales y Dinámicas no Lineales; Argentina Fil: Rufiner, Hugo Leonardo. Universidad Nacional del Litoral. Facultad de Ingeniería y Ciencias Hídricas. Departamento de Informática. Laboratorio de Investigaciones en Señales e Inteligencia Computacional; Argentina. Universidad Nacional del Litoral. Facultad de Ingeniería y Ciencias Hídricas; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina |
description |
For an adequate analysis of pathological speech signals, a sizeable number of parameters is required, such as those related to jitter, shimmer and noise content. Often this kind of high-dimensional signal representation is difficult to understand, even for expert voice therapists and physicians. Data visualization of a high-dimensional dataset can provide a useful first step in its exploratory data analysis, facilitating an understanding about its underlying structure. In the present paper, eight dimensionality reduction techniques, both classical and recent, are compared on speech data containing normal and pathological speech. A qualitative analysis of their dimensionality reduction capabilities is presented. The transformed data are also quantitatively evaluated, using classifiers, and it is found that it may be advantageous to perform the classification process on the transformed data, rather than on the original. These qualitative and quantitative analyses allow us to conclude that a nonlinear, supervised method, called kernel local Fisher discriminant analysis is superior for dimensionality reduction in the actual context. |
publishDate |
2009 |
dc.date.none.fl_str_mv |
2009-07 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/97938 Goddard, J.; Schlotthauer, Gaston; Torres, Maria Eugenia; Rufiner, Hugo Leonardo; Dimensionality reduction for visualization of normal and pathological speech data; Elsevier; Biomedical Signal Processing and Control; 4; 3; 7-2009; 194-201 1746-8094 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/97938 |
identifier_str_mv |
Goddard, J.; Schlotthauer, Gaston; Torres, Maria Eugenia; Rufiner, Hugo Leonardo; Dimensionality reduction for visualization of normal and pathological speech data; Elsevier; Biomedical Signal Processing and Control; 4; 3; 7-2009; 194-201 1746-8094 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/url/https://www.sciencedirect.com/science/article/pii/S1746809409000020 info:eu-repo/semantics/altIdentifier/doi/10.1016/j.bspc.2009.01.001 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
Elsevier |
publisher.none.fl_str_mv |
Elsevier |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1844614313357082624 |
score |
13.070432 |