Koszul duality for Coxeter groups
- Autores
- Riche, Simon; Vay, Cristian Damian
- Año de publicación
- 2024
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- We construct a “Koszul duality” equivalence relating the (diagrammatic) Hecke category attached to a Coxeter system and a given realization to the Hecke category attached to the same Coxeter system and the dual realization. This extends a construction of Beĭlinson–Ginzburg–Soergel [8] and Bezrukavnikov–Yun [9] in a geometric context, and of the first author with Achar, Makisumi and Williamson [4]. As an application, we show that the combinatorics of the “tilting perverse sheaves” considered in [6] is encoded in the combinatorics of the canonical basis of the Hecke algebra of (W,S) attached to the dual realization.
Fil: Riche, Simon. Centre National de la Recherche Scientifique; Francia
Fil: Vay, Cristian Damian. Universidad Nacional de Córdoba. Facultad de Matemática, Astronomía y Física; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Centro de Investigación y Estudios de Matemática. Universidad Nacional de Córdoba. Centro de Investigación y Estudios de Matemática; Argentina - Materia
-
KOSZUL DUALITY
COXETER GROUPS
ELIAS-WILLIAMSON DIAGRAMATIC CATEGORIES
PERVERSE SHEAVES - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/257068
Ver los metadatos del registro completo
id |
CONICETDig_6699ff477f1fb14abf5201250ae3cdd6 |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/257068 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Koszul duality for Coxeter groupsRiche, SimonVay, Cristian DamianKOSZUL DUALITYCOXETER GROUPSELIAS-WILLIAMSON DIAGRAMATIC CATEGORIESPERVERSE SHEAVEShttps://purl.org/becyt/ford/1.1https://purl.org/becyt/ford/1We construct a “Koszul duality” equivalence relating the (diagrammatic) Hecke category attached to a Coxeter system and a given realization to the Hecke category attached to the same Coxeter system and the dual realization. This extends a construction of Beĭlinson–Ginzburg–Soergel [8] and Bezrukavnikov–Yun [9] in a geometric context, and of the first author with Achar, Makisumi and Williamson [4]. As an application, we show that the combinatorics of the “tilting perverse sheaves” considered in [6] is encoded in the combinatorics of the canonical basis of the Hecke algebra of (W,S) attached to the dual realization.Fil: Riche, Simon. Centre National de la Recherche Scientifique; FranciaFil: Vay, Cristian Damian. Universidad Nacional de Córdoba. Facultad de Matemática, Astronomía y Física; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Centro de Investigación y Estudios de Matemática. Universidad Nacional de Córdoba. Centro de Investigación y Estudios de Matemática; ArgentinaNorwegian University of Science and Technology2024-05info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/257068Riche, Simon; Vay, Cristian Damian; Koszul duality for Coxeter groups; Norwegian University of Science and Technology; Annals of Representation Theory; 1; 3; 5-2024; 335-3742704-2081CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/https://art.centre-mersenne.org/articles/10.5802/art.10/info:eu-repo/semantics/altIdentifier/doi/10.5802/art.10info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T09:55:47Zoai:ri.conicet.gov.ar:11336/257068instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 09:55:47.328CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Koszul duality for Coxeter groups |
title |
Koszul duality for Coxeter groups |
spellingShingle |
Koszul duality for Coxeter groups Riche, Simon KOSZUL DUALITY COXETER GROUPS ELIAS-WILLIAMSON DIAGRAMATIC CATEGORIES PERVERSE SHEAVES |
title_short |
Koszul duality for Coxeter groups |
title_full |
Koszul duality for Coxeter groups |
title_fullStr |
Koszul duality for Coxeter groups |
title_full_unstemmed |
Koszul duality for Coxeter groups |
title_sort |
Koszul duality for Coxeter groups |
dc.creator.none.fl_str_mv |
Riche, Simon Vay, Cristian Damian |
author |
Riche, Simon |
author_facet |
Riche, Simon Vay, Cristian Damian |
author_role |
author |
author2 |
Vay, Cristian Damian |
author2_role |
author |
dc.subject.none.fl_str_mv |
KOSZUL DUALITY COXETER GROUPS ELIAS-WILLIAMSON DIAGRAMATIC CATEGORIES PERVERSE SHEAVES |
topic |
KOSZUL DUALITY COXETER GROUPS ELIAS-WILLIAMSON DIAGRAMATIC CATEGORIES PERVERSE SHEAVES |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.1 https://purl.org/becyt/ford/1 |
dc.description.none.fl_txt_mv |
We construct a “Koszul duality” equivalence relating the (diagrammatic) Hecke category attached to a Coxeter system and a given realization to the Hecke category attached to the same Coxeter system and the dual realization. This extends a construction of Beĭlinson–Ginzburg–Soergel [8] and Bezrukavnikov–Yun [9] in a geometric context, and of the first author with Achar, Makisumi and Williamson [4]. As an application, we show that the combinatorics of the “tilting perverse sheaves” considered in [6] is encoded in the combinatorics of the canonical basis of the Hecke algebra of (W,S) attached to the dual realization. Fil: Riche, Simon. Centre National de la Recherche Scientifique; Francia Fil: Vay, Cristian Damian. Universidad Nacional de Córdoba. Facultad de Matemática, Astronomía y Física; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Centro de Investigación y Estudios de Matemática. Universidad Nacional de Córdoba. Centro de Investigación y Estudios de Matemática; Argentina |
description |
We construct a “Koszul duality” equivalence relating the (diagrammatic) Hecke category attached to a Coxeter system and a given realization to the Hecke category attached to the same Coxeter system and the dual realization. This extends a construction of Beĭlinson–Ginzburg–Soergel [8] and Bezrukavnikov–Yun [9] in a geometric context, and of the first author with Achar, Makisumi and Williamson [4]. As an application, we show that the combinatorics of the “tilting perverse sheaves” considered in [6] is encoded in the combinatorics of the canonical basis of the Hecke algebra of (W,S) attached to the dual realization. |
publishDate |
2024 |
dc.date.none.fl_str_mv |
2024-05 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/257068 Riche, Simon; Vay, Cristian Damian; Koszul duality for Coxeter groups; Norwegian University of Science and Technology; Annals of Representation Theory; 1; 3; 5-2024; 335-374 2704-2081 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/257068 |
identifier_str_mv |
Riche, Simon; Vay, Cristian Damian; Koszul duality for Coxeter groups; Norwegian University of Science and Technology; Annals of Representation Theory; 1; 3; 5-2024; 335-374 2704-2081 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/url/https://art.centre-mersenne.org/articles/10.5802/art.10/ info:eu-repo/semantics/altIdentifier/doi/10.5802/art.10 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
Norwegian University of Science and Technology |
publisher.none.fl_str_mv |
Norwegian University of Science and Technology |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1844613679405858816 |
score |
13.070432 |