Hierarchical looping results in extreme extensibility of silk fibre composites produced by Southern house spiders (Kukulcania hibernalis)

Autores
Liprandi, Daniele; Ramirez, Martin Javier; Schlüter, Sascha; Baumgart, Lucas; Joel, AnnaChristin; Michalik, Peter; Wolff, Jonas O.
Año de publicación
2024
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
Spider silk is a tough and versatile biological material combining high tensile strength and extensibility through nanocomposite structure and its nonlinear elastic behaviour. Notably, spiders rarely use single silk fibres in isolation, but instead process them into more complex composites, such as silk fibre bundles, sheets and anchorages, involving a combination of spinneret, leg and body movements. While the material properties of single silk fibres have been extensively studied, the mechanical properties of silk composites and meta-structures are poorly understood and exhibit a hereto largely untapped potential for the bio-inspired design of novel fabrics with outstanding mechanical properties. In this study, we report on the tensile mechanics of the adhesive capture threads of the Southern house spider (Kukulcania hibernalis), which exhibit extreme extensibility, surpassing that of the viscid capture threads of orb weavers by up to tenfold. By combining high-resolution mechanical testing, microscopy and in silico experiments based on a hierarchical modified version of the Fibre Bundle Model, we demonstrate that extreme extensibility is based on a hierarchical loopson- loops structure combining linear and coiled elements. The stepwise unravelling of the loops leads to the repeated fracture of the connected linear fibres, delaying terminal failure and enhancing energy absorption. This principle could be used to achieve tailored fabrics and materials that are able to sustain high deformation without failure.
Fil: Liprandi, Daniele. Zoological Institute and Museum; Alemania
Fil: Ramirez, Martin Javier. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Parque Centenario. Museo Argentino de Ciencias Naturales "Bernardino Rivadavia"; Argentina
Fil: Schlüter, Sascha. Rwth Aachen University; Alemania
Fil: Baumgart, Lucas. Rwth Aachen University; Alemania
Fil: Joel, AnnaChristin. Rwth Aachen University; Alemania
Fil: Michalik, Peter. Zoological Institute and Museum; Alemania
Fil: Wolff, Jonas O.. Zoological Institute and Museum; Alemania
Materia
spider silk
material meta-structure
fibre composite material
fabric
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/258784

id CONICETDig_927b9d44394c20da1a6879d85670ada3
oai_identifier_str oai:ri.conicet.gov.ar:11336/258784
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling Hierarchical looping results in extreme extensibility of silk fibre composites produced by Southern house spiders (Kukulcania hibernalis)Liprandi, DanieleRamirez, Martin JavierSchlüter, SaschaBaumgart, LucasJoel, AnnaChristinMichalik, PeterWolff, Jonas O.spider silkmaterial meta-structurefibre composite materialfabrichttps://purl.org/becyt/ford/1.6https://purl.org/becyt/ford/1Spider silk is a tough and versatile biological material combining high tensile strength and extensibility through nanocomposite structure and its nonlinear elastic behaviour. Notably, spiders rarely use single silk fibres in isolation, but instead process them into more complex composites, such as silk fibre bundles, sheets and anchorages, involving a combination of spinneret, leg and body movements. While the material properties of single silk fibres have been extensively studied, the mechanical properties of silk composites and meta-structures are poorly understood and exhibit a hereto largely untapped potential for the bio-inspired design of novel fabrics with outstanding mechanical properties. In this study, we report on the tensile mechanics of the adhesive capture threads of the Southern house spider (Kukulcania hibernalis), which exhibit extreme extensibility, surpassing that of the viscid capture threads of orb weavers by up to tenfold. By combining high-resolution mechanical testing, microscopy and in silico experiments based on a hierarchical modified version of the Fibre Bundle Model, we demonstrate that extreme extensibility is based on a hierarchical loopson- loops structure combining linear and coiled elements. The stepwise unravelling of the loops leads to the repeated fracture of the connected linear fibres, delaying terminal failure and enhancing energy absorption. This principle could be used to achieve tailored fabrics and materials that are able to sustain high deformation without failure.Fil: Liprandi, Daniele. Zoological Institute and Museum; AlemaniaFil: Ramirez, Martin Javier. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Parque Centenario. Museo Argentino de Ciencias Naturales "Bernardino Rivadavia"; ArgentinaFil: Schlüter, Sascha. Rwth Aachen University; AlemaniaFil: Baumgart, Lucas. Rwth Aachen University; AlemaniaFil: Joel, AnnaChristin. Rwth Aachen University; AlemaniaFil: Michalik, Peter. Zoological Institute and Museum; AlemaniaFil: Wolff, Jonas O.. Zoological Institute and Museum; AlemaniaThe Royal Society2024-06info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/258784Liprandi, Daniele; Ramirez, Martin Javier; Schlüter, Sascha; Baumgart, Lucas; Joel, AnnaChristin; et al.; Hierarchical looping results in extreme extensibility of silk fibre composites produced by Southern house spiders (Kukulcania hibernalis); The Royal Society; Interface Focus; 14; 3; 6-2024; 1-122042-8901CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/https://royalsocietypublishing.org/doi/full/10.1098/rsfs.2023.0071info:eu-repo/semantics/altIdentifier/doi/10.1098/rsfs.2023.0071info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T09:43:05Zoai:ri.conicet.gov.ar:11336/258784instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 09:43:05.779CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv Hierarchical looping results in extreme extensibility of silk fibre composites produced by Southern house spiders (Kukulcania hibernalis)
title Hierarchical looping results in extreme extensibility of silk fibre composites produced by Southern house spiders (Kukulcania hibernalis)
spellingShingle Hierarchical looping results in extreme extensibility of silk fibre composites produced by Southern house spiders (Kukulcania hibernalis)
Liprandi, Daniele
spider silk
material meta-structure
fibre composite material
fabric
title_short Hierarchical looping results in extreme extensibility of silk fibre composites produced by Southern house spiders (Kukulcania hibernalis)
title_full Hierarchical looping results in extreme extensibility of silk fibre composites produced by Southern house spiders (Kukulcania hibernalis)
title_fullStr Hierarchical looping results in extreme extensibility of silk fibre composites produced by Southern house spiders (Kukulcania hibernalis)
title_full_unstemmed Hierarchical looping results in extreme extensibility of silk fibre composites produced by Southern house spiders (Kukulcania hibernalis)
title_sort Hierarchical looping results in extreme extensibility of silk fibre composites produced by Southern house spiders (Kukulcania hibernalis)
dc.creator.none.fl_str_mv Liprandi, Daniele
Ramirez, Martin Javier
Schlüter, Sascha
Baumgart, Lucas
Joel, AnnaChristin
Michalik, Peter
Wolff, Jonas O.
author Liprandi, Daniele
author_facet Liprandi, Daniele
Ramirez, Martin Javier
Schlüter, Sascha
Baumgart, Lucas
Joel, AnnaChristin
Michalik, Peter
Wolff, Jonas O.
author_role author
author2 Ramirez, Martin Javier
Schlüter, Sascha
Baumgart, Lucas
Joel, AnnaChristin
Michalik, Peter
Wolff, Jonas O.
author2_role author
author
author
author
author
author
dc.subject.none.fl_str_mv spider silk
material meta-structure
fibre composite material
fabric
topic spider silk
material meta-structure
fibre composite material
fabric
purl_subject.fl_str_mv https://purl.org/becyt/ford/1.6
https://purl.org/becyt/ford/1
dc.description.none.fl_txt_mv Spider silk is a tough and versatile biological material combining high tensile strength and extensibility through nanocomposite structure and its nonlinear elastic behaviour. Notably, spiders rarely use single silk fibres in isolation, but instead process them into more complex composites, such as silk fibre bundles, sheets and anchorages, involving a combination of spinneret, leg and body movements. While the material properties of single silk fibres have been extensively studied, the mechanical properties of silk composites and meta-structures are poorly understood and exhibit a hereto largely untapped potential for the bio-inspired design of novel fabrics with outstanding mechanical properties. In this study, we report on the tensile mechanics of the adhesive capture threads of the Southern house spider (Kukulcania hibernalis), which exhibit extreme extensibility, surpassing that of the viscid capture threads of orb weavers by up to tenfold. By combining high-resolution mechanical testing, microscopy and in silico experiments based on a hierarchical modified version of the Fibre Bundle Model, we demonstrate that extreme extensibility is based on a hierarchical loopson- loops structure combining linear and coiled elements. The stepwise unravelling of the loops leads to the repeated fracture of the connected linear fibres, delaying terminal failure and enhancing energy absorption. This principle could be used to achieve tailored fabrics and materials that are able to sustain high deformation without failure.
Fil: Liprandi, Daniele. Zoological Institute and Museum; Alemania
Fil: Ramirez, Martin Javier. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Parque Centenario. Museo Argentino de Ciencias Naturales "Bernardino Rivadavia"; Argentina
Fil: Schlüter, Sascha. Rwth Aachen University; Alemania
Fil: Baumgart, Lucas. Rwth Aachen University; Alemania
Fil: Joel, AnnaChristin. Rwth Aachen University; Alemania
Fil: Michalik, Peter. Zoological Institute and Museum; Alemania
Fil: Wolff, Jonas O.. Zoological Institute and Museum; Alemania
description Spider silk is a tough and versatile biological material combining high tensile strength and extensibility through nanocomposite structure and its nonlinear elastic behaviour. Notably, spiders rarely use single silk fibres in isolation, but instead process them into more complex composites, such as silk fibre bundles, sheets and anchorages, involving a combination of spinneret, leg and body movements. While the material properties of single silk fibres have been extensively studied, the mechanical properties of silk composites and meta-structures are poorly understood and exhibit a hereto largely untapped potential for the bio-inspired design of novel fabrics with outstanding mechanical properties. In this study, we report on the tensile mechanics of the adhesive capture threads of the Southern house spider (Kukulcania hibernalis), which exhibit extreme extensibility, surpassing that of the viscid capture threads of orb weavers by up to tenfold. By combining high-resolution mechanical testing, microscopy and in silico experiments based on a hierarchical modified version of the Fibre Bundle Model, we demonstrate that extreme extensibility is based on a hierarchical loopson- loops structure combining linear and coiled elements. The stepwise unravelling of the loops leads to the repeated fracture of the connected linear fibres, delaying terminal failure and enhancing energy absorption. This principle could be used to achieve tailored fabrics and materials that are able to sustain high deformation without failure.
publishDate 2024
dc.date.none.fl_str_mv 2024-06
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/258784
Liprandi, Daniele; Ramirez, Martin Javier; Schlüter, Sascha; Baumgart, Lucas; Joel, AnnaChristin; et al.; Hierarchical looping results in extreme extensibility of silk fibre composites produced by Southern house spiders (Kukulcania hibernalis); The Royal Society; Interface Focus; 14; 3; 6-2024; 1-12
2042-8901
CONICET Digital
CONICET
url http://hdl.handle.net/11336/258784
identifier_str_mv Liprandi, Daniele; Ramirez, Martin Javier; Schlüter, Sascha; Baumgart, Lucas; Joel, AnnaChristin; et al.; Hierarchical looping results in extreme extensibility of silk fibre composites produced by Southern house spiders (Kukulcania hibernalis); The Royal Society; Interface Focus; 14; 3; 6-2024; 1-12
2042-8901
CONICET Digital
CONICET
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/url/https://royalsocietypublishing.org/doi/full/10.1098/rsfs.2023.0071
info:eu-repo/semantics/altIdentifier/doi/10.1098/rsfs.2023.0071
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
dc.publisher.none.fl_str_mv The Royal Society
publisher.none.fl_str_mv The Royal Society
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1844613356433965056
score 13.070432