Hierarchical looping results in extreme extensibility of silk fibre composites produced by Southern house spiders (Kukulcania hibernalis)
- Autores
- Liprandi, Daniele; Ramirez, Martin Javier; Schlüter, Sascha; Baumgart, Lucas; Joel, AnnaChristin; Michalik, Peter; Wolff, Jonas O.
- Año de publicación
- 2024
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- Spider silk is a tough and versatile biological material combining high tensile strength and extensibility through nanocomposite structure and its nonlinear elastic behaviour. Notably, spiders rarely use single silk fibres in isolation, but instead process them into more complex composites, such as silk fibre bundles, sheets and anchorages, involving a combination of spinneret, leg and body movements. While the material properties of single silk fibres have been extensively studied, the mechanical properties of silk composites and meta-structures are poorly understood and exhibit a hereto largely untapped potential for the bio-inspired design of novel fabrics with outstanding mechanical properties. In this study, we report on the tensile mechanics of the adhesive capture threads of the Southern house spider (Kukulcania hibernalis), which exhibit extreme extensibility, surpassing that of the viscid capture threads of orb weavers by up to tenfold. By combining high-resolution mechanical testing, microscopy and in silico experiments based on a hierarchical modified version of the Fibre Bundle Model, we demonstrate that extreme extensibility is based on a hierarchical loopson- loops structure combining linear and coiled elements. The stepwise unravelling of the loops leads to the repeated fracture of the connected linear fibres, delaying terminal failure and enhancing energy absorption. This principle could be used to achieve tailored fabrics and materials that are able to sustain high deformation without failure.
Fil: Liprandi, Daniele. Zoological Institute and Museum; Alemania
Fil: Ramirez, Martin Javier. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Parque Centenario. Museo Argentino de Ciencias Naturales "Bernardino Rivadavia"; Argentina
Fil: Schlüter, Sascha. Rwth Aachen University; Alemania
Fil: Baumgart, Lucas. Rwth Aachen University; Alemania
Fil: Joel, AnnaChristin. Rwth Aachen University; Alemania
Fil: Michalik, Peter. Zoological Institute and Museum; Alemania
Fil: Wolff, Jonas O.. Zoological Institute and Museum; Alemania - Materia
-
spider silk
material meta-structure
fibre composite material
fabric - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/258784
Ver los metadatos del registro completo
id |
CONICETDig_927b9d44394c20da1a6879d85670ada3 |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/258784 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Hierarchical looping results in extreme extensibility of silk fibre composites produced by Southern house spiders (Kukulcania hibernalis)Liprandi, DanieleRamirez, Martin JavierSchlüter, SaschaBaumgart, LucasJoel, AnnaChristinMichalik, PeterWolff, Jonas O.spider silkmaterial meta-structurefibre composite materialfabrichttps://purl.org/becyt/ford/1.6https://purl.org/becyt/ford/1Spider silk is a tough and versatile biological material combining high tensile strength and extensibility through nanocomposite structure and its nonlinear elastic behaviour. Notably, spiders rarely use single silk fibres in isolation, but instead process them into more complex composites, such as silk fibre bundles, sheets and anchorages, involving a combination of spinneret, leg and body movements. While the material properties of single silk fibres have been extensively studied, the mechanical properties of silk composites and meta-structures are poorly understood and exhibit a hereto largely untapped potential for the bio-inspired design of novel fabrics with outstanding mechanical properties. In this study, we report on the tensile mechanics of the adhesive capture threads of the Southern house spider (Kukulcania hibernalis), which exhibit extreme extensibility, surpassing that of the viscid capture threads of orb weavers by up to tenfold. By combining high-resolution mechanical testing, microscopy and in silico experiments based on a hierarchical modified version of the Fibre Bundle Model, we demonstrate that extreme extensibility is based on a hierarchical loopson- loops structure combining linear and coiled elements. The stepwise unravelling of the loops leads to the repeated fracture of the connected linear fibres, delaying terminal failure and enhancing energy absorption. This principle could be used to achieve tailored fabrics and materials that are able to sustain high deformation without failure.Fil: Liprandi, Daniele. Zoological Institute and Museum; AlemaniaFil: Ramirez, Martin Javier. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Parque Centenario. Museo Argentino de Ciencias Naturales "Bernardino Rivadavia"; ArgentinaFil: Schlüter, Sascha. Rwth Aachen University; AlemaniaFil: Baumgart, Lucas. Rwth Aachen University; AlemaniaFil: Joel, AnnaChristin. Rwth Aachen University; AlemaniaFil: Michalik, Peter. Zoological Institute and Museum; AlemaniaFil: Wolff, Jonas O.. Zoological Institute and Museum; AlemaniaThe Royal Society2024-06info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/258784Liprandi, Daniele; Ramirez, Martin Javier; Schlüter, Sascha; Baumgart, Lucas; Joel, AnnaChristin; et al.; Hierarchical looping results in extreme extensibility of silk fibre composites produced by Southern house spiders (Kukulcania hibernalis); The Royal Society; Interface Focus; 14; 3; 6-2024; 1-122042-8901CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/https://royalsocietypublishing.org/doi/full/10.1098/rsfs.2023.0071info:eu-repo/semantics/altIdentifier/doi/10.1098/rsfs.2023.0071info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T09:43:05Zoai:ri.conicet.gov.ar:11336/258784instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 09:43:05.779CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Hierarchical looping results in extreme extensibility of silk fibre composites produced by Southern house spiders (Kukulcania hibernalis) |
title |
Hierarchical looping results in extreme extensibility of silk fibre composites produced by Southern house spiders (Kukulcania hibernalis) |
spellingShingle |
Hierarchical looping results in extreme extensibility of silk fibre composites produced by Southern house spiders (Kukulcania hibernalis) Liprandi, Daniele spider silk material meta-structure fibre composite material fabric |
title_short |
Hierarchical looping results in extreme extensibility of silk fibre composites produced by Southern house spiders (Kukulcania hibernalis) |
title_full |
Hierarchical looping results in extreme extensibility of silk fibre composites produced by Southern house spiders (Kukulcania hibernalis) |
title_fullStr |
Hierarchical looping results in extreme extensibility of silk fibre composites produced by Southern house spiders (Kukulcania hibernalis) |
title_full_unstemmed |
Hierarchical looping results in extreme extensibility of silk fibre composites produced by Southern house spiders (Kukulcania hibernalis) |
title_sort |
Hierarchical looping results in extreme extensibility of silk fibre composites produced by Southern house spiders (Kukulcania hibernalis) |
dc.creator.none.fl_str_mv |
Liprandi, Daniele Ramirez, Martin Javier Schlüter, Sascha Baumgart, Lucas Joel, AnnaChristin Michalik, Peter Wolff, Jonas O. |
author |
Liprandi, Daniele |
author_facet |
Liprandi, Daniele Ramirez, Martin Javier Schlüter, Sascha Baumgart, Lucas Joel, AnnaChristin Michalik, Peter Wolff, Jonas O. |
author_role |
author |
author2 |
Ramirez, Martin Javier Schlüter, Sascha Baumgart, Lucas Joel, AnnaChristin Michalik, Peter Wolff, Jonas O. |
author2_role |
author author author author author author |
dc.subject.none.fl_str_mv |
spider silk material meta-structure fibre composite material fabric |
topic |
spider silk material meta-structure fibre composite material fabric |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.6 https://purl.org/becyt/ford/1 |
dc.description.none.fl_txt_mv |
Spider silk is a tough and versatile biological material combining high tensile strength and extensibility through nanocomposite structure and its nonlinear elastic behaviour. Notably, spiders rarely use single silk fibres in isolation, but instead process them into more complex composites, such as silk fibre bundles, sheets and anchorages, involving a combination of spinneret, leg and body movements. While the material properties of single silk fibres have been extensively studied, the mechanical properties of silk composites and meta-structures are poorly understood and exhibit a hereto largely untapped potential for the bio-inspired design of novel fabrics with outstanding mechanical properties. In this study, we report on the tensile mechanics of the adhesive capture threads of the Southern house spider (Kukulcania hibernalis), which exhibit extreme extensibility, surpassing that of the viscid capture threads of orb weavers by up to tenfold. By combining high-resolution mechanical testing, microscopy and in silico experiments based on a hierarchical modified version of the Fibre Bundle Model, we demonstrate that extreme extensibility is based on a hierarchical loopson- loops structure combining linear and coiled elements. The stepwise unravelling of the loops leads to the repeated fracture of the connected linear fibres, delaying terminal failure and enhancing energy absorption. This principle could be used to achieve tailored fabrics and materials that are able to sustain high deformation without failure. Fil: Liprandi, Daniele. Zoological Institute and Museum; Alemania Fil: Ramirez, Martin Javier. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Parque Centenario. Museo Argentino de Ciencias Naturales "Bernardino Rivadavia"; Argentina Fil: Schlüter, Sascha. Rwth Aachen University; Alemania Fil: Baumgart, Lucas. Rwth Aachen University; Alemania Fil: Joel, AnnaChristin. Rwth Aachen University; Alemania Fil: Michalik, Peter. Zoological Institute and Museum; Alemania Fil: Wolff, Jonas O.. Zoological Institute and Museum; Alemania |
description |
Spider silk is a tough and versatile biological material combining high tensile strength and extensibility through nanocomposite structure and its nonlinear elastic behaviour. Notably, spiders rarely use single silk fibres in isolation, but instead process them into more complex composites, such as silk fibre bundles, sheets and anchorages, involving a combination of spinneret, leg and body movements. While the material properties of single silk fibres have been extensively studied, the mechanical properties of silk composites and meta-structures are poorly understood and exhibit a hereto largely untapped potential for the bio-inspired design of novel fabrics with outstanding mechanical properties. In this study, we report on the tensile mechanics of the adhesive capture threads of the Southern house spider (Kukulcania hibernalis), which exhibit extreme extensibility, surpassing that of the viscid capture threads of orb weavers by up to tenfold. By combining high-resolution mechanical testing, microscopy and in silico experiments based on a hierarchical modified version of the Fibre Bundle Model, we demonstrate that extreme extensibility is based on a hierarchical loopson- loops structure combining linear and coiled elements. The stepwise unravelling of the loops leads to the repeated fracture of the connected linear fibres, delaying terminal failure and enhancing energy absorption. This principle could be used to achieve tailored fabrics and materials that are able to sustain high deformation without failure. |
publishDate |
2024 |
dc.date.none.fl_str_mv |
2024-06 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/258784 Liprandi, Daniele; Ramirez, Martin Javier; Schlüter, Sascha; Baumgart, Lucas; Joel, AnnaChristin; et al.; Hierarchical looping results in extreme extensibility of silk fibre composites produced by Southern house spiders (Kukulcania hibernalis); The Royal Society; Interface Focus; 14; 3; 6-2024; 1-12 2042-8901 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/258784 |
identifier_str_mv |
Liprandi, Daniele; Ramirez, Martin Javier; Schlüter, Sascha; Baumgart, Lucas; Joel, AnnaChristin; et al.; Hierarchical looping results in extreme extensibility of silk fibre composites produced by Southern house spiders (Kukulcania hibernalis); The Royal Society; Interface Focus; 14; 3; 6-2024; 1-12 2042-8901 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/url/https://royalsocietypublishing.org/doi/full/10.1098/rsfs.2023.0071 info:eu-repo/semantics/altIdentifier/doi/10.1098/rsfs.2023.0071 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
The Royal Society |
publisher.none.fl_str_mv |
The Royal Society |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1844613356433965056 |
score |
13.070432 |