Biodegradable porous silk microtubes for tissue vascularization

Autores
Bosio, Valeria Elizabeth; Brown, J.; Rodriguez, M.J.; Kaplan, D.L.
Año de publicación
2016
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
Cardiovascular diseases are the leading cause of mortality around the globe, and microvasculature replacements to help stem these diseases are not available. Additionally, some vascular surgeries needing small-diameter vascular grafts present different performance requirements. In this work, silk fibroin scaffolds based on silk/polyethylene oxide blends were developed as microtubes for vasculature needs and for different tissue regeneration times, mechanical properties and structural designs. Systems with 13, 14 and 15% silk alone or blended with 1 or 2% of polyethylene oxide (PEO) were used to generate porous microtubes by gel spinning. Microtubes with inner diameters (IDs) of 150-300 μm and 100 μm wall thicknesses were fabricated. The systems were assessed for porosity, mechanical properties, enzymatic degradability, and in vitro vascular endothelial cell attachment and metabolic activity. After 14 days, all the tubes supported the proliferation of cells and the cell attachment increased with porosity. The silk tubes with PEO had similar crystallinity but a higher elastic modulus compared with the systems without PEO. The silk (13%)/PEO (1%) system showed the highest porosity (20 μm pore diameter on average), the highest cell attachment and the fastest degradation profile. There was a good correlation between these parameters with silk concentration and the presence of PEO. The results demonstrate the ability to generate versatile and tunable tubular biomaterials based on silk-PEO blends with potential for microvascular grafts.
Fil: Bosio, Valeria Elizabeth. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Centro de Investigación y Desarrollo en Fermentaciones Industriales. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Centro de Investigación y Desarrollo en Fermentaciones Industriales; Argentina
Fil: Brown, J.. Tufts University; España
Fil: Rodriguez, M.J.. Tufts University; España
Fil: Kaplan, D.L.. Tufts University; España
Materia
Silk
Tissue Engineering
Vascularization
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/49413

id CONICETDig_0898f0a6798a734340b26aed24320606
oai_identifier_str oai:ri.conicet.gov.ar:11336/49413
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling Biodegradable porous silk microtubes for tissue vascularizationBosio, Valeria ElizabethBrown, J.Rodriguez, M.J.Kaplan, D.L.SilkTissue EngineeringVascularizationhttps://purl.org/becyt/ford/3.4https://purl.org/becyt/ford/3Cardiovascular diseases are the leading cause of mortality around the globe, and microvasculature replacements to help stem these diseases are not available. Additionally, some vascular surgeries needing small-diameter vascular grafts present different performance requirements. In this work, silk fibroin scaffolds based on silk/polyethylene oxide blends were developed as microtubes for vasculature needs and for different tissue regeneration times, mechanical properties and structural designs. Systems with 13, 14 and 15% silk alone or blended with 1 or 2% of polyethylene oxide (PEO) were used to generate porous microtubes by gel spinning. Microtubes with inner diameters (IDs) of 150-300 μm and 100 μm wall thicknesses were fabricated. The systems were assessed for porosity, mechanical properties, enzymatic degradability, and in vitro vascular endothelial cell attachment and metabolic activity. After 14 days, all the tubes supported the proliferation of cells and the cell attachment increased with porosity. The silk tubes with PEO had similar crystallinity but a higher elastic modulus compared with the systems without PEO. The silk (13%)/PEO (1%) system showed the highest porosity (20 μm pore diameter on average), the highest cell attachment and the fastest degradation profile. There was a good correlation between these parameters with silk concentration and the presence of PEO. The results demonstrate the ability to generate versatile and tunable tubular biomaterials based on silk-PEO blends with potential for microvascular grafts.Fil: Bosio, Valeria Elizabeth. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Centro de Investigación y Desarrollo en Fermentaciones Industriales. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Centro de Investigación y Desarrollo en Fermentaciones Industriales; ArgentinaFil: Brown, J.. Tufts University; EspañaFil: Rodriguez, M.J.. Tufts University; EspañaFil: Kaplan, D.L.. Tufts University; EspañaRoyal Society of Chemistry2016-12info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/49413Bosio, Valeria Elizabeth; Brown, J.; Rodriguez, M.J.; Kaplan, D.L.; Biodegradable porous silk microtubes for tissue vascularization; Royal Society of Chemistry; Journal of Materials Chemistry B; 5; 6; 12-2016; 1227-12352050-750XCONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/doi/10.1039/c6tb02712ainfo:eu-repo/semantics/altIdentifier/url/http://pubs.rsc.org/en/Content/ArticleLanding/2017/TB/C6TB02712Ainfo:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-03T09:58:34Zoai:ri.conicet.gov.ar:11336/49413instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-03 09:58:34.405CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv Biodegradable porous silk microtubes for tissue vascularization
title Biodegradable porous silk microtubes for tissue vascularization
spellingShingle Biodegradable porous silk microtubes for tissue vascularization
Bosio, Valeria Elizabeth
Silk
Tissue Engineering
Vascularization
title_short Biodegradable porous silk microtubes for tissue vascularization
title_full Biodegradable porous silk microtubes for tissue vascularization
title_fullStr Biodegradable porous silk microtubes for tissue vascularization
title_full_unstemmed Biodegradable porous silk microtubes for tissue vascularization
title_sort Biodegradable porous silk microtubes for tissue vascularization
dc.creator.none.fl_str_mv Bosio, Valeria Elizabeth
Brown, J.
Rodriguez, M.J.
Kaplan, D.L.
author Bosio, Valeria Elizabeth
author_facet Bosio, Valeria Elizabeth
Brown, J.
Rodriguez, M.J.
Kaplan, D.L.
author_role author
author2 Brown, J.
Rodriguez, M.J.
Kaplan, D.L.
author2_role author
author
author
dc.subject.none.fl_str_mv Silk
Tissue Engineering
Vascularization
topic Silk
Tissue Engineering
Vascularization
purl_subject.fl_str_mv https://purl.org/becyt/ford/3.4
https://purl.org/becyt/ford/3
dc.description.none.fl_txt_mv Cardiovascular diseases are the leading cause of mortality around the globe, and microvasculature replacements to help stem these diseases are not available. Additionally, some vascular surgeries needing small-diameter vascular grafts present different performance requirements. In this work, silk fibroin scaffolds based on silk/polyethylene oxide blends were developed as microtubes for vasculature needs and for different tissue regeneration times, mechanical properties and structural designs. Systems with 13, 14 and 15% silk alone or blended with 1 or 2% of polyethylene oxide (PEO) were used to generate porous microtubes by gel spinning. Microtubes with inner diameters (IDs) of 150-300 μm and 100 μm wall thicknesses were fabricated. The systems were assessed for porosity, mechanical properties, enzymatic degradability, and in vitro vascular endothelial cell attachment and metabolic activity. After 14 days, all the tubes supported the proliferation of cells and the cell attachment increased with porosity. The silk tubes with PEO had similar crystallinity but a higher elastic modulus compared with the systems without PEO. The silk (13%)/PEO (1%) system showed the highest porosity (20 μm pore diameter on average), the highest cell attachment and the fastest degradation profile. There was a good correlation between these parameters with silk concentration and the presence of PEO. The results demonstrate the ability to generate versatile and tunable tubular biomaterials based on silk-PEO blends with potential for microvascular grafts.
Fil: Bosio, Valeria Elizabeth. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Centro de Investigación y Desarrollo en Fermentaciones Industriales. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Centro de Investigación y Desarrollo en Fermentaciones Industriales; Argentina
Fil: Brown, J.. Tufts University; España
Fil: Rodriguez, M.J.. Tufts University; España
Fil: Kaplan, D.L.. Tufts University; España
description Cardiovascular diseases are the leading cause of mortality around the globe, and microvasculature replacements to help stem these diseases are not available. Additionally, some vascular surgeries needing small-diameter vascular grafts present different performance requirements. In this work, silk fibroin scaffolds based on silk/polyethylene oxide blends were developed as microtubes for vasculature needs and for different tissue regeneration times, mechanical properties and structural designs. Systems with 13, 14 and 15% silk alone or blended with 1 or 2% of polyethylene oxide (PEO) were used to generate porous microtubes by gel spinning. Microtubes with inner diameters (IDs) of 150-300 μm and 100 μm wall thicknesses were fabricated. The systems were assessed for porosity, mechanical properties, enzymatic degradability, and in vitro vascular endothelial cell attachment and metabolic activity. After 14 days, all the tubes supported the proliferation of cells and the cell attachment increased with porosity. The silk tubes with PEO had similar crystallinity but a higher elastic modulus compared with the systems without PEO. The silk (13%)/PEO (1%) system showed the highest porosity (20 μm pore diameter on average), the highest cell attachment and the fastest degradation profile. There was a good correlation between these parameters with silk concentration and the presence of PEO. The results demonstrate the ability to generate versatile and tunable tubular biomaterials based on silk-PEO blends with potential for microvascular grafts.
publishDate 2016
dc.date.none.fl_str_mv 2016-12
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/49413
Bosio, Valeria Elizabeth; Brown, J.; Rodriguez, M.J.; Kaplan, D.L.; Biodegradable porous silk microtubes for tissue vascularization; Royal Society of Chemistry; Journal of Materials Chemistry B; 5; 6; 12-2016; 1227-1235
2050-750X
CONICET Digital
CONICET
url http://hdl.handle.net/11336/49413
identifier_str_mv Bosio, Valeria Elizabeth; Brown, J.; Rodriguez, M.J.; Kaplan, D.L.; Biodegradable porous silk microtubes for tissue vascularization; Royal Society of Chemistry; Journal of Materials Chemistry B; 5; 6; 12-2016; 1227-1235
2050-750X
CONICET Digital
CONICET
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/doi/10.1039/c6tb02712a
info:eu-repo/semantics/altIdentifier/url/http://pubs.rsc.org/en/Content/ArticleLanding/2017/TB/C6TB02712A
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
application/pdf
dc.publisher.none.fl_str_mv Royal Society of Chemistry
publisher.none.fl_str_mv Royal Society of Chemistry
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1842269527886266368
score 13.13397