Binary mixtures of azinphos-methyl oxon and chlorpyrifos oxon produce in vitro synergistic cholinesterase inhibition in Planorbarius corneus

Autores
Cacciatore, Luis Claudio; Kristoff, Gisela; Verrengia Guerrero, Noemí Rosario; Cochon, Adriana
Año de publicación
2012
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
In this study, the cholinesterase (ChE) and carboxylesterase (CES) activities present in whole organism homogenates from Planorbarius corneus and their in vitro sensitivity to organophosphorous (OP) pesticides were studied. Firstly, a characterization of ChE and CES activities using different substrates and selective inhibitors was performed. Secondly, the effects of azinphos-methyl oxon (AZM-oxon) and chlorpyrifos oxon (CPF-oxon), the active oxygen analogs of the OP insecticides AZM and CPF, on ChE and CES activities were evaluated. Finally, it was analyzed whether binary mixtures of the pesticide oxons cause additive, antagonistic or synergistic ChE inhibition in P. corneus homogenates. The results showed that the extracts of P. corneus preferentially hydrolyzed acetylthiocholine (AcSCh) over propionylthiocholine (PrSCh) and butyrylthiocholine (BuSCh). Besides, AcSCh hydrolyzing activity was inhibited by low concentrations of BW284c51, a selective inhibitor of AChE activity, and also by high concentrations of substrate. These facts suggest the presence of a typical AChE activity in this species. However, the different dose-response curves observed with BW284c51 when using PrSCh or BuSCh instead of AcSCh suggest the presence of at least another ChE activity. This would probably correspond to an atypical BuChE. Regarding CES activity, the highest specific activity was obtained when using 2-naphthyl acetate (2-NA), followed by 1-naphthyl acetate (1-NA); p-nitrophenyl acetate (p-NPA), and p-nitrophenyl butyrate (p-NPB). The comparison of the IC50 values revealed that, regardless of the substrate used, CES activity was approximately one order of magnitude more sensitive to AZM-oxon than ChE activity. Although ChE activity was very sensitive to CPF-oxon, CES activity measured with 1-NA, 2-NA, and p-NPA was poorly inhibited by this pesticide. In contrast, CES activity measured with p-NPB was equally sensitive to CPF-oxon than ChE activity. Several specific binary combinations of AZM-oxon and CPF-oxon caused a synergistic effect on the ChE inhibition in P. corneus homogenates. The degree of synergism tended to increase as the ratio of AZM-oxon to CPF-oxon decreased. These results suggest that synergism is likely to occur in P. corneus snails exposed in vivo to binary mixtures of the OPs AZM and CPF.
Fil: Cacciatore, Luis Claudio. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina
Fil: Kristoff, Gisela. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
Fil: Verrengia Guerrero, Noemí Rosario. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
Fil: Cochon, Adriana. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
Materia
Carboxylesterase
Cholinesterase
Invertebrate
Mixtures
Pesticides
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by-nc-nd/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/68207

id CONICETDig_922dc8ac47337065bacdcd285a9cb3b9
oai_identifier_str oai:ri.conicet.gov.ar:11336/68207
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling Binary mixtures of azinphos-methyl oxon and chlorpyrifos oxon produce in vitro synergistic cholinesterase inhibition in Planorbarius corneusCacciatore, Luis ClaudioKristoff, GiselaVerrengia Guerrero, Noemí RosarioCochon, AdrianaCarboxylesteraseCholinesteraseInvertebrateMixturesPesticideshttps://purl.org/becyt/ford/1.4https://purl.org/becyt/ford/1In this study, the cholinesterase (ChE) and carboxylesterase (CES) activities present in whole organism homogenates from Planorbarius corneus and their in vitro sensitivity to organophosphorous (OP) pesticides were studied. Firstly, a characterization of ChE and CES activities using different substrates and selective inhibitors was performed. Secondly, the effects of azinphos-methyl oxon (AZM-oxon) and chlorpyrifos oxon (CPF-oxon), the active oxygen analogs of the OP insecticides AZM and CPF, on ChE and CES activities were evaluated. Finally, it was analyzed whether binary mixtures of the pesticide oxons cause additive, antagonistic or synergistic ChE inhibition in P. corneus homogenates. The results showed that the extracts of P. corneus preferentially hydrolyzed acetylthiocholine (AcSCh) over propionylthiocholine (PrSCh) and butyrylthiocholine (BuSCh). Besides, AcSCh hydrolyzing activity was inhibited by low concentrations of BW284c51, a selective inhibitor of AChE activity, and also by high concentrations of substrate. These facts suggest the presence of a typical AChE activity in this species. However, the different dose-response curves observed with BW284c51 when using PrSCh or BuSCh instead of AcSCh suggest the presence of at least another ChE activity. This would probably correspond to an atypical BuChE. Regarding CES activity, the highest specific activity was obtained when using 2-naphthyl acetate (2-NA), followed by 1-naphthyl acetate (1-NA); p-nitrophenyl acetate (p-NPA), and p-nitrophenyl butyrate (p-NPB). The comparison of the IC50 values revealed that, regardless of the substrate used, CES activity was approximately one order of magnitude more sensitive to AZM-oxon than ChE activity. Although ChE activity was very sensitive to CPF-oxon, CES activity measured with 1-NA, 2-NA, and p-NPA was poorly inhibited by this pesticide. In contrast, CES activity measured with p-NPB was equally sensitive to CPF-oxon than ChE activity. Several specific binary combinations of AZM-oxon and CPF-oxon caused a synergistic effect on the ChE inhibition in P. corneus homogenates. The degree of synergism tended to increase as the ratio of AZM-oxon to CPF-oxon decreased. These results suggest that synergism is likely to occur in P. corneus snails exposed in vivo to binary mixtures of the OPs AZM and CPF.Fil: Cacciatore, Luis Claudio. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; ArgentinaFil: Kristoff, Gisela. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Verrengia Guerrero, Noemí Rosario. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Cochon, Adriana. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaPergamon-Elsevier Science Ltd2012-07info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/68207Cacciatore, Luis Claudio; Kristoff, Gisela; Verrengia Guerrero, Noemí Rosario; Cochon, Adriana; Binary mixtures of azinphos-methyl oxon and chlorpyrifos oxon produce in vitro synergistic cholinesterase inhibition in Planorbarius corneus; Pergamon-Elsevier Science Ltd; Chemosphere; 88; 4; 7-2012; 450-4580045-6535CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/doi/10.1016/j.chemosphere.2012.02.069info:eu-repo/semantics/altIdentifier/url/https://www.sciencedirect.com/science/article/pii/S0045653512002834info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-nd/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-03T10:12:06Zoai:ri.conicet.gov.ar:11336/68207instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-03 10:12:06.569CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv Binary mixtures of azinphos-methyl oxon and chlorpyrifos oxon produce in vitro synergistic cholinesterase inhibition in Planorbarius corneus
title Binary mixtures of azinphos-methyl oxon and chlorpyrifos oxon produce in vitro synergistic cholinesterase inhibition in Planorbarius corneus
spellingShingle Binary mixtures of azinphos-methyl oxon and chlorpyrifos oxon produce in vitro synergistic cholinesterase inhibition in Planorbarius corneus
Cacciatore, Luis Claudio
Carboxylesterase
Cholinesterase
Invertebrate
Mixtures
Pesticides
title_short Binary mixtures of azinphos-methyl oxon and chlorpyrifos oxon produce in vitro synergistic cholinesterase inhibition in Planorbarius corneus
title_full Binary mixtures of azinphos-methyl oxon and chlorpyrifos oxon produce in vitro synergistic cholinesterase inhibition in Planorbarius corneus
title_fullStr Binary mixtures of azinphos-methyl oxon and chlorpyrifos oxon produce in vitro synergistic cholinesterase inhibition in Planorbarius corneus
title_full_unstemmed Binary mixtures of azinphos-methyl oxon and chlorpyrifos oxon produce in vitro synergistic cholinesterase inhibition in Planorbarius corneus
title_sort Binary mixtures of azinphos-methyl oxon and chlorpyrifos oxon produce in vitro synergistic cholinesterase inhibition in Planorbarius corneus
dc.creator.none.fl_str_mv Cacciatore, Luis Claudio
Kristoff, Gisela
Verrengia Guerrero, Noemí Rosario
Cochon, Adriana
author Cacciatore, Luis Claudio
author_facet Cacciatore, Luis Claudio
Kristoff, Gisela
Verrengia Guerrero, Noemí Rosario
Cochon, Adriana
author_role author
author2 Kristoff, Gisela
Verrengia Guerrero, Noemí Rosario
Cochon, Adriana
author2_role author
author
author
dc.subject.none.fl_str_mv Carboxylesterase
Cholinesterase
Invertebrate
Mixtures
Pesticides
topic Carboxylesterase
Cholinesterase
Invertebrate
Mixtures
Pesticides
purl_subject.fl_str_mv https://purl.org/becyt/ford/1.4
https://purl.org/becyt/ford/1
dc.description.none.fl_txt_mv In this study, the cholinesterase (ChE) and carboxylesterase (CES) activities present in whole organism homogenates from Planorbarius corneus and their in vitro sensitivity to organophosphorous (OP) pesticides were studied. Firstly, a characterization of ChE and CES activities using different substrates and selective inhibitors was performed. Secondly, the effects of azinphos-methyl oxon (AZM-oxon) and chlorpyrifos oxon (CPF-oxon), the active oxygen analogs of the OP insecticides AZM and CPF, on ChE and CES activities were evaluated. Finally, it was analyzed whether binary mixtures of the pesticide oxons cause additive, antagonistic or synergistic ChE inhibition in P. corneus homogenates. The results showed that the extracts of P. corneus preferentially hydrolyzed acetylthiocholine (AcSCh) over propionylthiocholine (PrSCh) and butyrylthiocholine (BuSCh). Besides, AcSCh hydrolyzing activity was inhibited by low concentrations of BW284c51, a selective inhibitor of AChE activity, and also by high concentrations of substrate. These facts suggest the presence of a typical AChE activity in this species. However, the different dose-response curves observed with BW284c51 when using PrSCh or BuSCh instead of AcSCh suggest the presence of at least another ChE activity. This would probably correspond to an atypical BuChE. Regarding CES activity, the highest specific activity was obtained when using 2-naphthyl acetate (2-NA), followed by 1-naphthyl acetate (1-NA); p-nitrophenyl acetate (p-NPA), and p-nitrophenyl butyrate (p-NPB). The comparison of the IC50 values revealed that, regardless of the substrate used, CES activity was approximately one order of magnitude more sensitive to AZM-oxon than ChE activity. Although ChE activity was very sensitive to CPF-oxon, CES activity measured with 1-NA, 2-NA, and p-NPA was poorly inhibited by this pesticide. In contrast, CES activity measured with p-NPB was equally sensitive to CPF-oxon than ChE activity. Several specific binary combinations of AZM-oxon and CPF-oxon caused a synergistic effect on the ChE inhibition in P. corneus homogenates. The degree of synergism tended to increase as the ratio of AZM-oxon to CPF-oxon decreased. These results suggest that synergism is likely to occur in P. corneus snails exposed in vivo to binary mixtures of the OPs AZM and CPF.
Fil: Cacciatore, Luis Claudio. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina
Fil: Kristoff, Gisela. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
Fil: Verrengia Guerrero, Noemí Rosario. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
Fil: Cochon, Adriana. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
description In this study, the cholinesterase (ChE) and carboxylesterase (CES) activities present in whole organism homogenates from Planorbarius corneus and their in vitro sensitivity to organophosphorous (OP) pesticides were studied. Firstly, a characterization of ChE and CES activities using different substrates and selective inhibitors was performed. Secondly, the effects of azinphos-methyl oxon (AZM-oxon) and chlorpyrifos oxon (CPF-oxon), the active oxygen analogs of the OP insecticides AZM and CPF, on ChE and CES activities were evaluated. Finally, it was analyzed whether binary mixtures of the pesticide oxons cause additive, antagonistic or synergistic ChE inhibition in P. corneus homogenates. The results showed that the extracts of P. corneus preferentially hydrolyzed acetylthiocholine (AcSCh) over propionylthiocholine (PrSCh) and butyrylthiocholine (BuSCh). Besides, AcSCh hydrolyzing activity was inhibited by low concentrations of BW284c51, a selective inhibitor of AChE activity, and also by high concentrations of substrate. These facts suggest the presence of a typical AChE activity in this species. However, the different dose-response curves observed with BW284c51 when using PrSCh or BuSCh instead of AcSCh suggest the presence of at least another ChE activity. This would probably correspond to an atypical BuChE. Regarding CES activity, the highest specific activity was obtained when using 2-naphthyl acetate (2-NA), followed by 1-naphthyl acetate (1-NA); p-nitrophenyl acetate (p-NPA), and p-nitrophenyl butyrate (p-NPB). The comparison of the IC50 values revealed that, regardless of the substrate used, CES activity was approximately one order of magnitude more sensitive to AZM-oxon than ChE activity. Although ChE activity was very sensitive to CPF-oxon, CES activity measured with 1-NA, 2-NA, and p-NPA was poorly inhibited by this pesticide. In contrast, CES activity measured with p-NPB was equally sensitive to CPF-oxon than ChE activity. Several specific binary combinations of AZM-oxon and CPF-oxon caused a synergistic effect on the ChE inhibition in P. corneus homogenates. The degree of synergism tended to increase as the ratio of AZM-oxon to CPF-oxon decreased. These results suggest that synergism is likely to occur in P. corneus snails exposed in vivo to binary mixtures of the OPs AZM and CPF.
publishDate 2012
dc.date.none.fl_str_mv 2012-07
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/68207
Cacciatore, Luis Claudio; Kristoff, Gisela; Verrengia Guerrero, Noemí Rosario; Cochon, Adriana; Binary mixtures of azinphos-methyl oxon and chlorpyrifos oxon produce in vitro synergistic cholinesterase inhibition in Planorbarius corneus; Pergamon-Elsevier Science Ltd; Chemosphere; 88; 4; 7-2012; 450-458
0045-6535
CONICET Digital
CONICET
url http://hdl.handle.net/11336/68207
identifier_str_mv Cacciatore, Luis Claudio; Kristoff, Gisela; Verrengia Guerrero, Noemí Rosario; Cochon, Adriana; Binary mixtures of azinphos-methyl oxon and chlorpyrifos oxon produce in vitro synergistic cholinesterase inhibition in Planorbarius corneus; Pergamon-Elsevier Science Ltd; Chemosphere; 88; 4; 7-2012; 450-458
0045-6535
CONICET Digital
CONICET
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/doi/10.1016/j.chemosphere.2012.02.069
info:eu-repo/semantics/altIdentifier/url/https://www.sciencedirect.com/science/article/pii/S0045653512002834
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by-nc-nd/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-nd/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
application/pdf
application/pdf
application/pdf
dc.publisher.none.fl_str_mv Pergamon-Elsevier Science Ltd
publisher.none.fl_str_mv Pergamon-Elsevier Science Ltd
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1842270185090711552
score 13.13397