In vitro and in vivo studies of cholinesterases and carboxylesterases in Planorbarius corneus exposed to a phosphorodithioate insecticide: Finding the most sensitive combination of...

Autores
Otero, Sofía; Kristoff, Gisela
Año de publicación
2016
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
Organophosphate insecticides (OPs) continue to be an important class of agrochemicals used in modern agriculture worldwide. Even though these pesticides persist in the environment for a relatively short time, they show a high acute toxicity that may represent a serious hazard for wildlife. Sub-lethal effects on non-target species are a focus in pest management programs and should be used as biomarkers. Cholinesterases (ChEs) are the most used biomarker of OP exposure in vertebrate and invertebrate species. However, the combined monitoring of ChE and carboxylesterase (CE) activities may provide a more useful indication of exposure and effect of the organisms. The objective of the present work was to find the most sensitive combination of enzyme, substrate, tissue and capacity to recovery of B-esterases in the freshwater gastropod Planorbarius corneus exposed to the OP azinphos-methyl. For this purpose, ChE and CE activities in different tissues of P. corneus (head-foot, pulmonary region, digestive gland, gonads and whole organism soft tissue) were studied. Measurements of ChE activity were performed using three substrates: acetylthiocholine, propionylthiocholine and butyrylthiocholine and CE activity using four different substrates: p-nitrophenyl acetate, p-nitrophenyl butyrate, 1-naphthyl acetate, and 2-naphthyl acetate in control and exposed organisms. Finally, the recovery rates of ChE and CE activities following 48 h exposure to azinphos-methyl were analyzed. Our results show a preference for acetylthiocholine as substrate, a high inhibition with eserine (a selective ChE inhibitor) and inhibition with excess of substrate in all the analyzed tissues. The highest ChE and CE activity was found in the pulmonary region and in the digestive gland, respectively. The highest CE Vmax was obtained with 1 and 2-naphthyl acetate in all the tissues. CEs were more sensitive than ChE to azinphos-methyl exposure. The highest sensitivity was found using p-nitrophenyl acetate and butyrate as substrates. On the other hand, CEs of the digestive gland and the pulmonary region were more sensitive than CEs of the whole organism soft tissue. Regarding the recovery of enzyme activities after 48 h exposure, ChE and CEs with p-nitrophenyl butyrate reached control values after 14 days in the digestive gland and after 21 days in the pulmonary region. Our results show marked differences in P. corneus basal ChE and CE activities depending on substrates and the tissue. Also, both tissue-dependent and substrate-dependent variations in sensitivity to azinphos-methyl exposure and recovery were obtained. CEs measured with p-nitrophenyl butyrate in the pulmonary region were the best combination to be used as biomarker of exposure to azinphos-methyl due to their sensitivity and low recovery capacity. Environmental concentrations of azinphos-methyl inhibited CE activity so they could be used as effective biomarkers of aquatic contamination.
Fil: Otero, Sofía. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Química Biológica; Argentina
Fil: Kristoff, Gisela. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales; Argentina
Materia
Azinphos-Methyl
B-Esterases
Biomarkers
Freshwater Invertebrates
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/84291

id CONICETDig_3fb514fd9055026a254cf5baface8f5e
oai_identifier_str oai:ri.conicet.gov.ar:11336/84291
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling In vitro and in vivo studies of cholinesterases and carboxylesterases in Planorbarius corneus exposed to a phosphorodithioate insecticide: Finding the most sensitive combination of enzymes, substrates, tissues and recovery capacityOtero, SofíaKristoff, GiselaAzinphos-MethylB-EsterasesBiomarkersFreshwater Invertebrateshttps://purl.org/becyt/ford/1.6https://purl.org/becyt/ford/1Organophosphate insecticides (OPs) continue to be an important class of agrochemicals used in modern agriculture worldwide. Even though these pesticides persist in the environment for a relatively short time, they show a high acute toxicity that may represent a serious hazard for wildlife. Sub-lethal effects on non-target species are a focus in pest management programs and should be used as biomarkers. Cholinesterases (ChEs) are the most used biomarker of OP exposure in vertebrate and invertebrate species. However, the combined monitoring of ChE and carboxylesterase (CE) activities may provide a more useful indication of exposure and effect of the organisms. The objective of the present work was to find the most sensitive combination of enzyme, substrate, tissue and capacity to recovery of B-esterases in the freshwater gastropod Planorbarius corneus exposed to the OP azinphos-methyl. For this purpose, ChE and CE activities in different tissues of P. corneus (head-foot, pulmonary region, digestive gland, gonads and whole organism soft tissue) were studied. Measurements of ChE activity were performed using three substrates: acetylthiocholine, propionylthiocholine and butyrylthiocholine and CE activity using four different substrates: p-nitrophenyl acetate, p-nitrophenyl butyrate, 1-naphthyl acetate, and 2-naphthyl acetate in control and exposed organisms. Finally, the recovery rates of ChE and CE activities following 48 h exposure to azinphos-methyl were analyzed. Our results show a preference for acetylthiocholine as substrate, a high inhibition with eserine (a selective ChE inhibitor) and inhibition with excess of substrate in all the analyzed tissues. The highest ChE and CE activity was found in the pulmonary region and in the digestive gland, respectively. The highest CE Vmax was obtained with 1 and 2-naphthyl acetate in all the tissues. CEs were more sensitive than ChE to azinphos-methyl exposure. The highest sensitivity was found using p-nitrophenyl acetate and butyrate as substrates. On the other hand, CEs of the digestive gland and the pulmonary region were more sensitive than CEs of the whole organism soft tissue. Regarding the recovery of enzyme activities after 48 h exposure, ChE and CEs with p-nitrophenyl butyrate reached control values after 14 days in the digestive gland and after 21 days in the pulmonary region. Our results show marked differences in P. corneus basal ChE and CE activities depending on substrates and the tissue. Also, both tissue-dependent and substrate-dependent variations in sensitivity to azinphos-methyl exposure and recovery were obtained. CEs measured with p-nitrophenyl butyrate in the pulmonary region were the best combination to be used as biomarker of exposure to azinphos-methyl due to their sensitivity and low recovery capacity. Environmental concentrations of azinphos-methyl inhibited CE activity so they could be used as effective biomarkers of aquatic contamination.Fil: Otero, Sofía. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Química Biológica; ArgentinaFil: Kristoff, Gisela. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales; ArgentinaElsevier Science2016-11info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/84291Otero, Sofía; Kristoff, Gisela; In vitro and in vivo studies of cholinesterases and carboxylesterases in Planorbarius corneus exposed to a phosphorodithioate insecticide: Finding the most sensitive combination of enzymes, substrates, tissues and recovery capacity; Elsevier Science; Aquatic Toxicology; 180; 11-2016; 186-1950166-445XCONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/doi/10.1016/j.aquatox.2016.10.002info:eu-repo/semantics/altIdentifier/url/https://www.sciencedirect.com/science/article/pii/S0166445X1630279Xinfo:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-17T10:46:58Zoai:ri.conicet.gov.ar:11336/84291instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-17 10:46:59.19CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv In vitro and in vivo studies of cholinesterases and carboxylesterases in Planorbarius corneus exposed to a phosphorodithioate insecticide: Finding the most sensitive combination of enzymes, substrates, tissues and recovery capacity
title In vitro and in vivo studies of cholinesterases and carboxylesterases in Planorbarius corneus exposed to a phosphorodithioate insecticide: Finding the most sensitive combination of enzymes, substrates, tissues and recovery capacity
spellingShingle In vitro and in vivo studies of cholinesterases and carboxylesterases in Planorbarius corneus exposed to a phosphorodithioate insecticide: Finding the most sensitive combination of enzymes, substrates, tissues and recovery capacity
Otero, Sofía
Azinphos-Methyl
B-Esterases
Biomarkers
Freshwater Invertebrates
title_short In vitro and in vivo studies of cholinesterases and carboxylesterases in Planorbarius corneus exposed to a phosphorodithioate insecticide: Finding the most sensitive combination of enzymes, substrates, tissues and recovery capacity
title_full In vitro and in vivo studies of cholinesterases and carboxylesterases in Planorbarius corneus exposed to a phosphorodithioate insecticide: Finding the most sensitive combination of enzymes, substrates, tissues and recovery capacity
title_fullStr In vitro and in vivo studies of cholinesterases and carboxylesterases in Planorbarius corneus exposed to a phosphorodithioate insecticide: Finding the most sensitive combination of enzymes, substrates, tissues and recovery capacity
title_full_unstemmed In vitro and in vivo studies of cholinesterases and carboxylesterases in Planorbarius corneus exposed to a phosphorodithioate insecticide: Finding the most sensitive combination of enzymes, substrates, tissues and recovery capacity
title_sort In vitro and in vivo studies of cholinesterases and carboxylesterases in Planorbarius corneus exposed to a phosphorodithioate insecticide: Finding the most sensitive combination of enzymes, substrates, tissues and recovery capacity
dc.creator.none.fl_str_mv Otero, Sofía
Kristoff, Gisela
author Otero, Sofía
author_facet Otero, Sofía
Kristoff, Gisela
author_role author
author2 Kristoff, Gisela
author2_role author
dc.subject.none.fl_str_mv Azinphos-Methyl
B-Esterases
Biomarkers
Freshwater Invertebrates
topic Azinphos-Methyl
B-Esterases
Biomarkers
Freshwater Invertebrates
purl_subject.fl_str_mv https://purl.org/becyt/ford/1.6
https://purl.org/becyt/ford/1
dc.description.none.fl_txt_mv Organophosphate insecticides (OPs) continue to be an important class of agrochemicals used in modern agriculture worldwide. Even though these pesticides persist in the environment for a relatively short time, they show a high acute toxicity that may represent a serious hazard for wildlife. Sub-lethal effects on non-target species are a focus in pest management programs and should be used as biomarkers. Cholinesterases (ChEs) are the most used biomarker of OP exposure in vertebrate and invertebrate species. However, the combined monitoring of ChE and carboxylesterase (CE) activities may provide a more useful indication of exposure and effect of the organisms. The objective of the present work was to find the most sensitive combination of enzyme, substrate, tissue and capacity to recovery of B-esterases in the freshwater gastropod Planorbarius corneus exposed to the OP azinphos-methyl. For this purpose, ChE and CE activities in different tissues of P. corneus (head-foot, pulmonary region, digestive gland, gonads and whole organism soft tissue) were studied. Measurements of ChE activity were performed using three substrates: acetylthiocholine, propionylthiocholine and butyrylthiocholine and CE activity using four different substrates: p-nitrophenyl acetate, p-nitrophenyl butyrate, 1-naphthyl acetate, and 2-naphthyl acetate in control and exposed organisms. Finally, the recovery rates of ChE and CE activities following 48 h exposure to azinphos-methyl were analyzed. Our results show a preference for acetylthiocholine as substrate, a high inhibition with eserine (a selective ChE inhibitor) and inhibition with excess of substrate in all the analyzed tissues. The highest ChE and CE activity was found in the pulmonary region and in the digestive gland, respectively. The highest CE Vmax was obtained with 1 and 2-naphthyl acetate in all the tissues. CEs were more sensitive than ChE to azinphos-methyl exposure. The highest sensitivity was found using p-nitrophenyl acetate and butyrate as substrates. On the other hand, CEs of the digestive gland and the pulmonary region were more sensitive than CEs of the whole organism soft tissue. Regarding the recovery of enzyme activities after 48 h exposure, ChE and CEs with p-nitrophenyl butyrate reached control values after 14 days in the digestive gland and after 21 days in the pulmonary region. Our results show marked differences in P. corneus basal ChE and CE activities depending on substrates and the tissue. Also, both tissue-dependent and substrate-dependent variations in sensitivity to azinphos-methyl exposure and recovery were obtained. CEs measured with p-nitrophenyl butyrate in the pulmonary region were the best combination to be used as biomarker of exposure to azinphos-methyl due to their sensitivity and low recovery capacity. Environmental concentrations of azinphos-methyl inhibited CE activity so they could be used as effective biomarkers of aquatic contamination.
Fil: Otero, Sofía. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Química Biológica; Argentina
Fil: Kristoff, Gisela. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales; Argentina
description Organophosphate insecticides (OPs) continue to be an important class of agrochemicals used in modern agriculture worldwide. Even though these pesticides persist in the environment for a relatively short time, they show a high acute toxicity that may represent a serious hazard for wildlife. Sub-lethal effects on non-target species are a focus in pest management programs and should be used as biomarkers. Cholinesterases (ChEs) are the most used biomarker of OP exposure in vertebrate and invertebrate species. However, the combined monitoring of ChE and carboxylesterase (CE) activities may provide a more useful indication of exposure and effect of the organisms. The objective of the present work was to find the most sensitive combination of enzyme, substrate, tissue and capacity to recovery of B-esterases in the freshwater gastropod Planorbarius corneus exposed to the OP azinphos-methyl. For this purpose, ChE and CE activities in different tissues of P. corneus (head-foot, pulmonary region, digestive gland, gonads and whole organism soft tissue) were studied. Measurements of ChE activity were performed using three substrates: acetylthiocholine, propionylthiocholine and butyrylthiocholine and CE activity using four different substrates: p-nitrophenyl acetate, p-nitrophenyl butyrate, 1-naphthyl acetate, and 2-naphthyl acetate in control and exposed organisms. Finally, the recovery rates of ChE and CE activities following 48 h exposure to azinphos-methyl were analyzed. Our results show a preference for acetylthiocholine as substrate, a high inhibition with eserine (a selective ChE inhibitor) and inhibition with excess of substrate in all the analyzed tissues. The highest ChE and CE activity was found in the pulmonary region and in the digestive gland, respectively. The highest CE Vmax was obtained with 1 and 2-naphthyl acetate in all the tissues. CEs were more sensitive than ChE to azinphos-methyl exposure. The highest sensitivity was found using p-nitrophenyl acetate and butyrate as substrates. On the other hand, CEs of the digestive gland and the pulmonary region were more sensitive than CEs of the whole organism soft tissue. Regarding the recovery of enzyme activities after 48 h exposure, ChE and CEs with p-nitrophenyl butyrate reached control values after 14 days in the digestive gland and after 21 days in the pulmonary region. Our results show marked differences in P. corneus basal ChE and CE activities depending on substrates and the tissue. Also, both tissue-dependent and substrate-dependent variations in sensitivity to azinphos-methyl exposure and recovery were obtained. CEs measured with p-nitrophenyl butyrate in the pulmonary region were the best combination to be used as biomarker of exposure to azinphos-methyl due to their sensitivity and low recovery capacity. Environmental concentrations of azinphos-methyl inhibited CE activity so they could be used as effective biomarkers of aquatic contamination.
publishDate 2016
dc.date.none.fl_str_mv 2016-11
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/84291
Otero, Sofía; Kristoff, Gisela; In vitro and in vivo studies of cholinesterases and carboxylesterases in Planorbarius corneus exposed to a phosphorodithioate insecticide: Finding the most sensitive combination of enzymes, substrates, tissues and recovery capacity; Elsevier Science; Aquatic Toxicology; 180; 11-2016; 186-195
0166-445X
CONICET Digital
CONICET
url http://hdl.handle.net/11336/84291
identifier_str_mv Otero, Sofía; Kristoff, Gisela; In vitro and in vivo studies of cholinesterases and carboxylesterases in Planorbarius corneus exposed to a phosphorodithioate insecticide: Finding the most sensitive combination of enzymes, substrates, tissues and recovery capacity; Elsevier Science; Aquatic Toxicology; 180; 11-2016; 186-195
0166-445X
CONICET Digital
CONICET
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/doi/10.1016/j.aquatox.2016.10.002
info:eu-repo/semantics/altIdentifier/url/https://www.sciencedirect.com/science/article/pii/S0166445X1630279X
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
dc.publisher.none.fl_str_mv Elsevier Science
publisher.none.fl_str_mv Elsevier Science
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1843606047070093312
score 13.000565