Rapid and reliable identification of Staphylococcus aureus capsular serotypes by means of artificial neural network-assisted Fourier-transform infrared spectroscopy
- Autores
- Grunert, Tom; Wenning, Mareike; Barbagelata, María Sol; Fricker, Martina; Sordelli, Daniel Oscar; Buzzola, Fernanda Roxana; Ehling Schulz, Monika
- Año de publicación
- 2013
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- Staphylococcus aureus capsular polysaccharides (CP) are important virulence factors and represent putative targets for vaccine development. Therefore, the purpose of this study was to develop a high-throughput method to identify and discriminate the clinically important S. aureus capsular serotypes 5, 8, and NT (nontypeable). A comprehensive set of clinical isolates derived from different origins and control strains, representative for each serotype, were used to establish a CP typing system based on Fourier transform infrared (FTIR) spectroscopy and chemometric techniques. By combining FTIR spectroscopy with artificial neuronal network (ANN) analysis, a system was successfully established, allowing a rapid identification and discrimination of all three serotypes. The overall accuracy of the ANN-assisted FTIR spectroscopy CP typing system was 96.7% for the internal validation and 98.2% for the external validation. One isolate in the internal validation and one isolate in the external validation failed in the classification procedure, but none of the isolates was incorrectly classified. The present study demonstrates that ANN-assisted FTIR spectroscopy allows a rapid and reliable discrimination of S. aureus capsular serotypes. It is suitable for diagnostic as well as large-scale epidemiologic surveillance of S. aureus capsule expression and provides useful information with respect to chronicity of infection.
Fil: Grunert, Tom. University of Veterinary Medicine; Austria
Fil: Wenning, Mareike. Technische Universitat Munchen; Alemania
Fil: Barbagelata, María Sol. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Houssay. Instituto de Investigaciones en Microbiología y Parasitología Médica. Universidad de Buenos Aires. Facultad de Medicina. Instituto de Investigaciones en Microbiología y Parasitología Médica; Argentina
Fil: Fricker, Martina. University of Veterinary Medicine; Austria
Fil: Sordelli, Daniel Oscar. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Houssay. Instituto de Investigaciones en Microbiología y Parasitología Médica. Universidad de Buenos Aires. Facultad de Medicina. Instituto de Investigaciones en Microbiología y Parasitología Médica; Argentina
Fil: Buzzola, Fernanda Roxana. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Houssay. Instituto de Investigaciones en Microbiología y Parasitología Médica. Universidad de Buenos Aires. Facultad de Medicina. Instituto de Investigaciones en Microbiología y Parasitología Médica; Argentina
Fil: Ehling Schulz, Monika. University of Veterinary Medicine; Austria - Materia
-
STAPHYLOCOCCUS AUREUS
FTIR
CAPSULE - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/21297
Ver los metadatos del registro completo
id |
CONICETDig_922437d1ce5a01c17a4957040de4abe7 |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/21297 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Rapid and reliable identification of Staphylococcus aureus capsular serotypes by means of artificial neural network-assisted Fourier-transform infrared spectroscopyGrunert, TomWenning, MareikeBarbagelata, María SolFricker, MartinaSordelli, Daniel OscarBuzzola, Fernanda RoxanaEhling Schulz, MonikaSTAPHYLOCOCCUS AUREUSFTIRCAPSULEhttps://purl.org/becyt/ford/4.3https://purl.org/becyt/ford/4Staphylococcus aureus capsular polysaccharides (CP) are important virulence factors and represent putative targets for vaccine development. Therefore, the purpose of this study was to develop a high-throughput method to identify and discriminate the clinically important S. aureus capsular serotypes 5, 8, and NT (nontypeable). A comprehensive set of clinical isolates derived from different origins and control strains, representative for each serotype, were used to establish a CP typing system based on Fourier transform infrared (FTIR) spectroscopy and chemometric techniques. By combining FTIR spectroscopy with artificial neuronal network (ANN) analysis, a system was successfully established, allowing a rapid identification and discrimination of all three serotypes. The overall accuracy of the ANN-assisted FTIR spectroscopy CP typing system was 96.7% for the internal validation and 98.2% for the external validation. One isolate in the internal validation and one isolate in the external validation failed in the classification procedure, but none of the isolates was incorrectly classified. The present study demonstrates that ANN-assisted FTIR spectroscopy allows a rapid and reliable discrimination of S. aureus capsular serotypes. It is suitable for diagnostic as well as large-scale epidemiologic surveillance of S. aureus capsule expression and provides useful information with respect to chronicity of infection.Fil: Grunert, Tom. University of Veterinary Medicine; AustriaFil: Wenning, Mareike. Technische Universitat Munchen; AlemaniaFil: Barbagelata, María Sol. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Houssay. Instituto de Investigaciones en Microbiología y Parasitología Médica. Universidad de Buenos Aires. Facultad de Medicina. Instituto de Investigaciones en Microbiología y Parasitología Médica; ArgentinaFil: Fricker, Martina. University of Veterinary Medicine; AustriaFil: Sordelli, Daniel Oscar. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Houssay. Instituto de Investigaciones en Microbiología y Parasitología Médica. Universidad de Buenos Aires. Facultad de Medicina. Instituto de Investigaciones en Microbiología y Parasitología Médica; ArgentinaFil: Buzzola, Fernanda Roxana. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Houssay. Instituto de Investigaciones en Microbiología y Parasitología Médica. Universidad de Buenos Aires. Facultad de Medicina. Instituto de Investigaciones en Microbiología y Parasitología Médica; ArgentinaFil: Ehling Schulz, Monika. University of Veterinary Medicine; AustriaAmerican Society for Microbiology2013-05info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/21297Grunert, Tom; Wenning, Mareike; Barbagelata, María Sol; Fricker, Martina; Sordelli, Daniel Oscar; et al.; Rapid and reliable identification of Staphylococcus aureus capsular serotypes by means of artificial neural network-assisted Fourier-transform infrared spectroscopy; American Society for Microbiology; Journal of Clinical Microbiology; 51; 7; 5-2013; 2261-22660095-1137CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/http://jcm.asm.org/content/51/7/2261.longinfo:eu-repo/semantics/altIdentifier/doi/10.1128/JCM.00581-13info:eu-repo/semantics/altIdentifier/url/https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3697708/info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-03T09:56:44Zoai:ri.conicet.gov.ar:11336/21297instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-03 09:56:44.308CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Rapid and reliable identification of Staphylococcus aureus capsular serotypes by means of artificial neural network-assisted Fourier-transform infrared spectroscopy |
title |
Rapid and reliable identification of Staphylococcus aureus capsular serotypes by means of artificial neural network-assisted Fourier-transform infrared spectroscopy |
spellingShingle |
Rapid and reliable identification of Staphylococcus aureus capsular serotypes by means of artificial neural network-assisted Fourier-transform infrared spectroscopy Grunert, Tom STAPHYLOCOCCUS AUREUS FTIR CAPSULE |
title_short |
Rapid and reliable identification of Staphylococcus aureus capsular serotypes by means of artificial neural network-assisted Fourier-transform infrared spectroscopy |
title_full |
Rapid and reliable identification of Staphylococcus aureus capsular serotypes by means of artificial neural network-assisted Fourier-transform infrared spectroscopy |
title_fullStr |
Rapid and reliable identification of Staphylococcus aureus capsular serotypes by means of artificial neural network-assisted Fourier-transform infrared spectroscopy |
title_full_unstemmed |
Rapid and reliable identification of Staphylococcus aureus capsular serotypes by means of artificial neural network-assisted Fourier-transform infrared spectroscopy |
title_sort |
Rapid and reliable identification of Staphylococcus aureus capsular serotypes by means of artificial neural network-assisted Fourier-transform infrared spectroscopy |
dc.creator.none.fl_str_mv |
Grunert, Tom Wenning, Mareike Barbagelata, María Sol Fricker, Martina Sordelli, Daniel Oscar Buzzola, Fernanda Roxana Ehling Schulz, Monika |
author |
Grunert, Tom |
author_facet |
Grunert, Tom Wenning, Mareike Barbagelata, María Sol Fricker, Martina Sordelli, Daniel Oscar Buzzola, Fernanda Roxana Ehling Schulz, Monika |
author_role |
author |
author2 |
Wenning, Mareike Barbagelata, María Sol Fricker, Martina Sordelli, Daniel Oscar Buzzola, Fernanda Roxana Ehling Schulz, Monika |
author2_role |
author author author author author author |
dc.subject.none.fl_str_mv |
STAPHYLOCOCCUS AUREUS FTIR CAPSULE |
topic |
STAPHYLOCOCCUS AUREUS FTIR CAPSULE |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/4.3 https://purl.org/becyt/ford/4 |
dc.description.none.fl_txt_mv |
Staphylococcus aureus capsular polysaccharides (CP) are important virulence factors and represent putative targets for vaccine development. Therefore, the purpose of this study was to develop a high-throughput method to identify and discriminate the clinically important S. aureus capsular serotypes 5, 8, and NT (nontypeable). A comprehensive set of clinical isolates derived from different origins and control strains, representative for each serotype, were used to establish a CP typing system based on Fourier transform infrared (FTIR) spectroscopy and chemometric techniques. By combining FTIR spectroscopy with artificial neuronal network (ANN) analysis, a system was successfully established, allowing a rapid identification and discrimination of all three serotypes. The overall accuracy of the ANN-assisted FTIR spectroscopy CP typing system was 96.7% for the internal validation and 98.2% for the external validation. One isolate in the internal validation and one isolate in the external validation failed in the classification procedure, but none of the isolates was incorrectly classified. The present study demonstrates that ANN-assisted FTIR spectroscopy allows a rapid and reliable discrimination of S. aureus capsular serotypes. It is suitable for diagnostic as well as large-scale epidemiologic surveillance of S. aureus capsule expression and provides useful information with respect to chronicity of infection. Fil: Grunert, Tom. University of Veterinary Medicine; Austria Fil: Wenning, Mareike. Technische Universitat Munchen; Alemania Fil: Barbagelata, María Sol. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Houssay. Instituto de Investigaciones en Microbiología y Parasitología Médica. Universidad de Buenos Aires. Facultad de Medicina. Instituto de Investigaciones en Microbiología y Parasitología Médica; Argentina Fil: Fricker, Martina. University of Veterinary Medicine; Austria Fil: Sordelli, Daniel Oscar. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Houssay. Instituto de Investigaciones en Microbiología y Parasitología Médica. Universidad de Buenos Aires. Facultad de Medicina. Instituto de Investigaciones en Microbiología y Parasitología Médica; Argentina Fil: Buzzola, Fernanda Roxana. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Houssay. Instituto de Investigaciones en Microbiología y Parasitología Médica. Universidad de Buenos Aires. Facultad de Medicina. Instituto de Investigaciones en Microbiología y Parasitología Médica; Argentina Fil: Ehling Schulz, Monika. University of Veterinary Medicine; Austria |
description |
Staphylococcus aureus capsular polysaccharides (CP) are important virulence factors and represent putative targets for vaccine development. Therefore, the purpose of this study was to develop a high-throughput method to identify and discriminate the clinically important S. aureus capsular serotypes 5, 8, and NT (nontypeable). A comprehensive set of clinical isolates derived from different origins and control strains, representative for each serotype, were used to establish a CP typing system based on Fourier transform infrared (FTIR) spectroscopy and chemometric techniques. By combining FTIR spectroscopy with artificial neuronal network (ANN) analysis, a system was successfully established, allowing a rapid identification and discrimination of all three serotypes. The overall accuracy of the ANN-assisted FTIR spectroscopy CP typing system was 96.7% for the internal validation and 98.2% for the external validation. One isolate in the internal validation and one isolate in the external validation failed in the classification procedure, but none of the isolates was incorrectly classified. The present study demonstrates that ANN-assisted FTIR spectroscopy allows a rapid and reliable discrimination of S. aureus capsular serotypes. It is suitable for diagnostic as well as large-scale epidemiologic surveillance of S. aureus capsule expression and provides useful information with respect to chronicity of infection. |
publishDate |
2013 |
dc.date.none.fl_str_mv |
2013-05 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/21297 Grunert, Tom; Wenning, Mareike; Barbagelata, María Sol; Fricker, Martina; Sordelli, Daniel Oscar; et al.; Rapid and reliable identification of Staphylococcus aureus capsular serotypes by means of artificial neural network-assisted Fourier-transform infrared spectroscopy; American Society for Microbiology; Journal of Clinical Microbiology; 51; 7; 5-2013; 2261-2266 0095-1137 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/21297 |
identifier_str_mv |
Grunert, Tom; Wenning, Mareike; Barbagelata, María Sol; Fricker, Martina; Sordelli, Daniel Oscar; et al.; Rapid and reliable identification of Staphylococcus aureus capsular serotypes by means of artificial neural network-assisted Fourier-transform infrared spectroscopy; American Society for Microbiology; Journal of Clinical Microbiology; 51; 7; 5-2013; 2261-2266 0095-1137 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/url/http://jcm.asm.org/content/51/7/2261.long info:eu-repo/semantics/altIdentifier/doi/10.1128/JCM.00581-13 info:eu-repo/semantics/altIdentifier/url/https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3697708/ |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
American Society for Microbiology |
publisher.none.fl_str_mv |
American Society for Microbiology |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1842269420468043776 |
score |
13.13397 |