Simulations of cratering and sputtering from an ion track in crystalline and amorphous Lennard Jones thin films
- Autores
- Gutierres, L. I.; Lima, N.W.; Thomaz, R. S.; Papaléo, R. M.; Bringa, Eduardo Marcial
- Año de publicación
- 2017
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- Impacts of swift heavy ions of different energy loss in amorphous and crystalline Lennard-Jones (LJ) thin films (2–60 nm) were simulated using classical molecular dynamics to study cratering and sputtering in model molecular thin films. Crater size is determined mostly by evaporation and melt flow from the hot ion track, while rim size is determined both by melt flow and by coherent displacement of particles due to the large pressure developed in the excited region, with minor influence of particles from the substrate. Sputtering yields from both crystalline and amorphous samples are similar (including the scaling with energy loss), due to the extremely high temperature and disordered condition of the track region from where most ejected particles originate in the early stages of the track evolution. Cratering, however clearly depends on the crystallinity of the film. Craters and rims are much smaller in crystalline films mainly due to faster energy dissipation, higher stress threshold for plasticity and smaller free-volume in the ordered phase. We also found a large dependence of the induced surface effects on film thickness below a critical thickness value. The pressure pulse due to the ion impact is weaker and cooling of the excited track is more efficient in short tracks, both contributing to the decreased radiation damage efficiency on ultrathin layers. Despite the simplicity of the LJ model, the simulations in the amorphous films reproduce remarkably well several of the experimental features seen recently on polymer thin and ultrathin films irradiated by swift heavy ions.
Fil: Gutierres, L. I.. Pontificia Universidade Católica do Rio Grande do Sul; Brasil
Fil: Lima, N.W.. Pontificia Universidade Católica do Rio Grande do Sul; Brasil
Fil: Thomaz, R. S.. Pontificia Universidade Católica do Rio Grande do Sul; Brasil
Fil: Papaléo, R. M.. Pontificia Universidade Católica do Rio Grande do Sul; Brasil
Fil: Bringa, Eduardo Marcial. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad Nacional de Cuyo. Facultad de Ciencias Exactas y Naturales; Argentina - Materia
-
Craters
Molecular Dynamics Simulations
Polymers
Swift Heavy Ions - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/59712
Ver los metadatos del registro completo
id |
CONICETDig_919c6d4a615f6b979b719d5fcb3e623a |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/59712 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Simulations of cratering and sputtering from an ion track in crystalline and amorphous Lennard Jones thin filmsGutierres, L. I.Lima, N.W.Thomaz, R. S.Papaléo, R. M.Bringa, Eduardo MarcialCratersMolecular Dynamics SimulationsPolymersSwift Heavy Ionshttps://purl.org/becyt/ford/1.3https://purl.org/becyt/ford/1Impacts of swift heavy ions of different energy loss in amorphous and crystalline Lennard-Jones (LJ) thin films (2–60 nm) were simulated using classical molecular dynamics to study cratering and sputtering in model molecular thin films. Crater size is determined mostly by evaporation and melt flow from the hot ion track, while rim size is determined both by melt flow and by coherent displacement of particles due to the large pressure developed in the excited region, with minor influence of particles from the substrate. Sputtering yields from both crystalline and amorphous samples are similar (including the scaling with energy loss), due to the extremely high temperature and disordered condition of the track region from where most ejected particles originate in the early stages of the track evolution. Cratering, however clearly depends on the crystallinity of the film. Craters and rims are much smaller in crystalline films mainly due to faster energy dissipation, higher stress threshold for plasticity and smaller free-volume in the ordered phase. We also found a large dependence of the induced surface effects on film thickness below a critical thickness value. The pressure pulse due to the ion impact is weaker and cooling of the excited track is more efficient in short tracks, both contributing to the decreased radiation damage efficiency on ultrathin layers. Despite the simplicity of the LJ model, the simulations in the amorphous films reproduce remarkably well several of the experimental features seen recently on polymer thin and ultrathin films irradiated by swift heavy ions.Fil: Gutierres, L. I.. Pontificia Universidade Católica do Rio Grande do Sul; BrasilFil: Lima, N.W.. Pontificia Universidade Católica do Rio Grande do Sul; BrasilFil: Thomaz, R. S.. Pontificia Universidade Católica do Rio Grande do Sul; BrasilFil: Papaléo, R. M.. Pontificia Universidade Católica do Rio Grande do Sul; BrasilFil: Bringa, Eduardo Marcial. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad Nacional de Cuyo. Facultad de Ciencias Exactas y Naturales; ArgentinaElsevier2017-03info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/59712Gutierres, L. I.; Lima, N.W.; Thomaz, R. S.; Papaléo, R. M.; Bringa, Eduardo Marcial; Simulations of cratering and sputtering from an ion track in crystalline and amorphous Lennard Jones thin films; Elsevier; Computacional Materials Science; 129; 3-2017; 98-1060927-0256CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/doi/10.1016/j.commatsci.2016.12.001info:eu-repo/semantics/altIdentifier/url/https://www.sciencedirect.com/science/article/pii/S0927025616306140info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T10:06:19Zoai:ri.conicet.gov.ar:11336/59712instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 10:06:20.193CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Simulations of cratering and sputtering from an ion track in crystalline and amorphous Lennard Jones thin films |
title |
Simulations of cratering and sputtering from an ion track in crystalline and amorphous Lennard Jones thin films |
spellingShingle |
Simulations of cratering and sputtering from an ion track in crystalline and amorphous Lennard Jones thin films Gutierres, L. I. Craters Molecular Dynamics Simulations Polymers Swift Heavy Ions |
title_short |
Simulations of cratering and sputtering from an ion track in crystalline and amorphous Lennard Jones thin films |
title_full |
Simulations of cratering and sputtering from an ion track in crystalline and amorphous Lennard Jones thin films |
title_fullStr |
Simulations of cratering and sputtering from an ion track in crystalline and amorphous Lennard Jones thin films |
title_full_unstemmed |
Simulations of cratering and sputtering from an ion track in crystalline and amorphous Lennard Jones thin films |
title_sort |
Simulations of cratering and sputtering from an ion track in crystalline and amorphous Lennard Jones thin films |
dc.creator.none.fl_str_mv |
Gutierres, L. I. Lima, N.W. Thomaz, R. S. Papaléo, R. M. Bringa, Eduardo Marcial |
author |
Gutierres, L. I. |
author_facet |
Gutierres, L. I. Lima, N.W. Thomaz, R. S. Papaléo, R. M. Bringa, Eduardo Marcial |
author_role |
author |
author2 |
Lima, N.W. Thomaz, R. S. Papaléo, R. M. Bringa, Eduardo Marcial |
author2_role |
author author author author |
dc.subject.none.fl_str_mv |
Craters Molecular Dynamics Simulations Polymers Swift Heavy Ions |
topic |
Craters Molecular Dynamics Simulations Polymers Swift Heavy Ions |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.3 https://purl.org/becyt/ford/1 |
dc.description.none.fl_txt_mv |
Impacts of swift heavy ions of different energy loss in amorphous and crystalline Lennard-Jones (LJ) thin films (2–60 nm) were simulated using classical molecular dynamics to study cratering and sputtering in model molecular thin films. Crater size is determined mostly by evaporation and melt flow from the hot ion track, while rim size is determined both by melt flow and by coherent displacement of particles due to the large pressure developed in the excited region, with minor influence of particles from the substrate. Sputtering yields from both crystalline and amorphous samples are similar (including the scaling with energy loss), due to the extremely high temperature and disordered condition of the track region from where most ejected particles originate in the early stages of the track evolution. Cratering, however clearly depends on the crystallinity of the film. Craters and rims are much smaller in crystalline films mainly due to faster energy dissipation, higher stress threshold for plasticity and smaller free-volume in the ordered phase. We also found a large dependence of the induced surface effects on film thickness below a critical thickness value. The pressure pulse due to the ion impact is weaker and cooling of the excited track is more efficient in short tracks, both contributing to the decreased radiation damage efficiency on ultrathin layers. Despite the simplicity of the LJ model, the simulations in the amorphous films reproduce remarkably well several of the experimental features seen recently on polymer thin and ultrathin films irradiated by swift heavy ions. Fil: Gutierres, L. I.. Pontificia Universidade Católica do Rio Grande do Sul; Brasil Fil: Lima, N.W.. Pontificia Universidade Católica do Rio Grande do Sul; Brasil Fil: Thomaz, R. S.. Pontificia Universidade Católica do Rio Grande do Sul; Brasil Fil: Papaléo, R. M.. Pontificia Universidade Católica do Rio Grande do Sul; Brasil Fil: Bringa, Eduardo Marcial. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad Nacional de Cuyo. Facultad de Ciencias Exactas y Naturales; Argentina |
description |
Impacts of swift heavy ions of different energy loss in amorphous and crystalline Lennard-Jones (LJ) thin films (2–60 nm) were simulated using classical molecular dynamics to study cratering and sputtering in model molecular thin films. Crater size is determined mostly by evaporation and melt flow from the hot ion track, while rim size is determined both by melt flow and by coherent displacement of particles due to the large pressure developed in the excited region, with minor influence of particles from the substrate. Sputtering yields from both crystalline and amorphous samples are similar (including the scaling with energy loss), due to the extremely high temperature and disordered condition of the track region from where most ejected particles originate in the early stages of the track evolution. Cratering, however clearly depends on the crystallinity of the film. Craters and rims are much smaller in crystalline films mainly due to faster energy dissipation, higher stress threshold for plasticity and smaller free-volume in the ordered phase. We also found a large dependence of the induced surface effects on film thickness below a critical thickness value. The pressure pulse due to the ion impact is weaker and cooling of the excited track is more efficient in short tracks, both contributing to the decreased radiation damage efficiency on ultrathin layers. Despite the simplicity of the LJ model, the simulations in the amorphous films reproduce remarkably well several of the experimental features seen recently on polymer thin and ultrathin films irradiated by swift heavy ions. |
publishDate |
2017 |
dc.date.none.fl_str_mv |
2017-03 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/59712 Gutierres, L. I.; Lima, N.W.; Thomaz, R. S.; Papaléo, R. M.; Bringa, Eduardo Marcial; Simulations of cratering and sputtering from an ion track in crystalline and amorphous Lennard Jones thin films; Elsevier; Computacional Materials Science; 129; 3-2017; 98-106 0927-0256 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/59712 |
identifier_str_mv |
Gutierres, L. I.; Lima, N.W.; Thomaz, R. S.; Papaléo, R. M.; Bringa, Eduardo Marcial; Simulations of cratering and sputtering from an ion track in crystalline and amorphous Lennard Jones thin films; Elsevier; Computacional Materials Science; 129; 3-2017; 98-106 0927-0256 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/doi/10.1016/j.commatsci.2016.12.001 info:eu-repo/semantics/altIdentifier/url/https://www.sciencedirect.com/science/article/pii/S0927025616306140 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
Elsevier |
publisher.none.fl_str_mv |
Elsevier |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1844613910387228672 |
score |
13.070432 |