Simulations of cratering and sputtering from an ion track in crystalline and amorphous Lennard Jones thin films

Autores
Gutierres, L. I.; Lima, N.W.; Thomaz, R. S.; Papaléo, R. M.; Bringa, Eduardo Marcial
Año de publicación
2017
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
Impacts of swift heavy ions of different energy loss in amorphous and crystalline Lennard-Jones (LJ) thin films (2–60 nm) were simulated using classical molecular dynamics to study cratering and sputtering in model molecular thin films. Crater size is determined mostly by evaporation and melt flow from the hot ion track, while rim size is determined both by melt flow and by coherent displacement of particles due to the large pressure developed in the excited region, with minor influence of particles from the substrate. Sputtering yields from both crystalline and amorphous samples are similar (including the scaling with energy loss), due to the extremely high temperature and disordered condition of the track region from where most ejected particles originate in the early stages of the track evolution. Cratering, however clearly depends on the crystallinity of the film. Craters and rims are much smaller in crystalline films mainly due to faster energy dissipation, higher stress threshold for plasticity and smaller free-volume in the ordered phase. We also found a large dependence of the induced surface effects on film thickness below a critical thickness value. The pressure pulse due to the ion impact is weaker and cooling of the excited track is more efficient in short tracks, both contributing to the decreased radiation damage efficiency on ultrathin layers. Despite the simplicity of the LJ model, the simulations in the amorphous films reproduce remarkably well several of the experimental features seen recently on polymer thin and ultrathin films irradiated by swift heavy ions.
Fil: Gutierres, L. I.. Pontificia Universidade Católica do Rio Grande do Sul; Brasil
Fil: Lima, N.W.. Pontificia Universidade Católica do Rio Grande do Sul; Brasil
Fil: Thomaz, R. S.. Pontificia Universidade Católica do Rio Grande do Sul; Brasil
Fil: Papaléo, R. M.. Pontificia Universidade Católica do Rio Grande do Sul; Brasil
Fil: Bringa, Eduardo Marcial. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad Nacional de Cuyo. Facultad de Ciencias Exactas y Naturales; Argentina
Materia
Craters
Molecular Dynamics Simulations
Polymers
Swift Heavy Ions
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/59712

id CONICETDig_919c6d4a615f6b979b719d5fcb3e623a
oai_identifier_str oai:ri.conicet.gov.ar:11336/59712
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling Simulations of cratering and sputtering from an ion track in crystalline and amorphous Lennard Jones thin filmsGutierres, L. I.Lima, N.W.Thomaz, R. S.Papaléo, R. M.Bringa, Eduardo MarcialCratersMolecular Dynamics SimulationsPolymersSwift Heavy Ionshttps://purl.org/becyt/ford/1.3https://purl.org/becyt/ford/1Impacts of swift heavy ions of different energy loss in amorphous and crystalline Lennard-Jones (LJ) thin films (2–60 nm) were simulated using classical molecular dynamics to study cratering and sputtering in model molecular thin films. Crater size is determined mostly by evaporation and melt flow from the hot ion track, while rim size is determined both by melt flow and by coherent displacement of particles due to the large pressure developed in the excited region, with minor influence of particles from the substrate. Sputtering yields from both crystalline and amorphous samples are similar (including the scaling with energy loss), due to the extremely high temperature and disordered condition of the track region from where most ejected particles originate in the early stages of the track evolution. Cratering, however clearly depends on the crystallinity of the film. Craters and rims are much smaller in crystalline films mainly due to faster energy dissipation, higher stress threshold for plasticity and smaller free-volume in the ordered phase. We also found a large dependence of the induced surface effects on film thickness below a critical thickness value. The pressure pulse due to the ion impact is weaker and cooling of the excited track is more efficient in short tracks, both contributing to the decreased radiation damage efficiency on ultrathin layers. Despite the simplicity of the LJ model, the simulations in the amorphous films reproduce remarkably well several of the experimental features seen recently on polymer thin and ultrathin films irradiated by swift heavy ions.Fil: Gutierres, L. I.. Pontificia Universidade Católica do Rio Grande do Sul; BrasilFil: Lima, N.W.. Pontificia Universidade Católica do Rio Grande do Sul; BrasilFil: Thomaz, R. S.. Pontificia Universidade Católica do Rio Grande do Sul; BrasilFil: Papaléo, R. M.. Pontificia Universidade Católica do Rio Grande do Sul; BrasilFil: Bringa, Eduardo Marcial. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad Nacional de Cuyo. Facultad de Ciencias Exactas y Naturales; ArgentinaElsevier2017-03info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/59712Gutierres, L. I.; Lima, N.W.; Thomaz, R. S.; Papaléo, R. M.; Bringa, Eduardo Marcial; Simulations of cratering and sputtering from an ion track in crystalline and amorphous Lennard Jones thin films; Elsevier; Computacional Materials Science; 129; 3-2017; 98-1060927-0256CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/doi/10.1016/j.commatsci.2016.12.001info:eu-repo/semantics/altIdentifier/url/https://www.sciencedirect.com/science/article/pii/S0927025616306140info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T10:06:19Zoai:ri.conicet.gov.ar:11336/59712instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 10:06:20.193CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv Simulations of cratering and sputtering from an ion track in crystalline and amorphous Lennard Jones thin films
title Simulations of cratering and sputtering from an ion track in crystalline and amorphous Lennard Jones thin films
spellingShingle Simulations of cratering and sputtering from an ion track in crystalline and amorphous Lennard Jones thin films
Gutierres, L. I.
Craters
Molecular Dynamics Simulations
Polymers
Swift Heavy Ions
title_short Simulations of cratering and sputtering from an ion track in crystalline and amorphous Lennard Jones thin films
title_full Simulations of cratering and sputtering from an ion track in crystalline and amorphous Lennard Jones thin films
title_fullStr Simulations of cratering and sputtering from an ion track in crystalline and amorphous Lennard Jones thin films
title_full_unstemmed Simulations of cratering and sputtering from an ion track in crystalline and amorphous Lennard Jones thin films
title_sort Simulations of cratering and sputtering from an ion track in crystalline and amorphous Lennard Jones thin films
dc.creator.none.fl_str_mv Gutierres, L. I.
Lima, N.W.
Thomaz, R. S.
Papaléo, R. M.
Bringa, Eduardo Marcial
author Gutierres, L. I.
author_facet Gutierres, L. I.
Lima, N.W.
Thomaz, R. S.
Papaléo, R. M.
Bringa, Eduardo Marcial
author_role author
author2 Lima, N.W.
Thomaz, R. S.
Papaléo, R. M.
Bringa, Eduardo Marcial
author2_role author
author
author
author
dc.subject.none.fl_str_mv Craters
Molecular Dynamics Simulations
Polymers
Swift Heavy Ions
topic Craters
Molecular Dynamics Simulations
Polymers
Swift Heavy Ions
purl_subject.fl_str_mv https://purl.org/becyt/ford/1.3
https://purl.org/becyt/ford/1
dc.description.none.fl_txt_mv Impacts of swift heavy ions of different energy loss in amorphous and crystalline Lennard-Jones (LJ) thin films (2–60 nm) were simulated using classical molecular dynamics to study cratering and sputtering in model molecular thin films. Crater size is determined mostly by evaporation and melt flow from the hot ion track, while rim size is determined both by melt flow and by coherent displacement of particles due to the large pressure developed in the excited region, with minor influence of particles from the substrate. Sputtering yields from both crystalline and amorphous samples are similar (including the scaling with energy loss), due to the extremely high temperature and disordered condition of the track region from where most ejected particles originate in the early stages of the track evolution. Cratering, however clearly depends on the crystallinity of the film. Craters and rims are much smaller in crystalline films mainly due to faster energy dissipation, higher stress threshold for plasticity and smaller free-volume in the ordered phase. We also found a large dependence of the induced surface effects on film thickness below a critical thickness value. The pressure pulse due to the ion impact is weaker and cooling of the excited track is more efficient in short tracks, both contributing to the decreased radiation damage efficiency on ultrathin layers. Despite the simplicity of the LJ model, the simulations in the amorphous films reproduce remarkably well several of the experimental features seen recently on polymer thin and ultrathin films irradiated by swift heavy ions.
Fil: Gutierres, L. I.. Pontificia Universidade Católica do Rio Grande do Sul; Brasil
Fil: Lima, N.W.. Pontificia Universidade Católica do Rio Grande do Sul; Brasil
Fil: Thomaz, R. S.. Pontificia Universidade Católica do Rio Grande do Sul; Brasil
Fil: Papaléo, R. M.. Pontificia Universidade Católica do Rio Grande do Sul; Brasil
Fil: Bringa, Eduardo Marcial. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad Nacional de Cuyo. Facultad de Ciencias Exactas y Naturales; Argentina
description Impacts of swift heavy ions of different energy loss in amorphous and crystalline Lennard-Jones (LJ) thin films (2–60 nm) were simulated using classical molecular dynamics to study cratering and sputtering in model molecular thin films. Crater size is determined mostly by evaporation and melt flow from the hot ion track, while rim size is determined both by melt flow and by coherent displacement of particles due to the large pressure developed in the excited region, with minor influence of particles from the substrate. Sputtering yields from both crystalline and amorphous samples are similar (including the scaling with energy loss), due to the extremely high temperature and disordered condition of the track region from where most ejected particles originate in the early stages of the track evolution. Cratering, however clearly depends on the crystallinity of the film. Craters and rims are much smaller in crystalline films mainly due to faster energy dissipation, higher stress threshold for plasticity and smaller free-volume in the ordered phase. We also found a large dependence of the induced surface effects on film thickness below a critical thickness value. The pressure pulse due to the ion impact is weaker and cooling of the excited track is more efficient in short tracks, both contributing to the decreased radiation damage efficiency on ultrathin layers. Despite the simplicity of the LJ model, the simulations in the amorphous films reproduce remarkably well several of the experimental features seen recently on polymer thin and ultrathin films irradiated by swift heavy ions.
publishDate 2017
dc.date.none.fl_str_mv 2017-03
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/59712
Gutierres, L. I.; Lima, N.W.; Thomaz, R. S.; Papaléo, R. M.; Bringa, Eduardo Marcial; Simulations of cratering and sputtering from an ion track in crystalline and amorphous Lennard Jones thin films; Elsevier; Computacional Materials Science; 129; 3-2017; 98-106
0927-0256
CONICET Digital
CONICET
url http://hdl.handle.net/11336/59712
identifier_str_mv Gutierres, L. I.; Lima, N.W.; Thomaz, R. S.; Papaléo, R. M.; Bringa, Eduardo Marcial; Simulations of cratering and sputtering from an ion track in crystalline and amorphous Lennard Jones thin films; Elsevier; Computacional Materials Science; 129; 3-2017; 98-106
0927-0256
CONICET Digital
CONICET
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/doi/10.1016/j.commatsci.2016.12.001
info:eu-repo/semantics/altIdentifier/url/https://www.sciencedirect.com/science/article/pii/S0927025616306140
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
dc.publisher.none.fl_str_mv Elsevier
publisher.none.fl_str_mv Elsevier
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1844613910387228672
score 13.070432