Genetic algorithm applied to parameter estimation of bacterial growth modeling

Autores
Pedrozo, Héctor Alejandro; Schvezov, Carlos Enrique
Año de publicación
2016
Idioma
inglés
Tipo de recurso
artículo
Estado
versión borrador
Descripción
Fil: Pedrozo, Héctor Alejandro. Universidad Nacional de Misiones. Facultad de Ciencias Exactas, Químicas y Naturales. Instituto de Materiales de Misiones; Argentina.
Fil: Pedrozo, Héctor Alejandro. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico (Nordeste). Instituto de Materiales de Misiones; Argentina.
Fil: Schvezov, Carlos Enrique. Universidad Nacional de Misiones. Facultad de Ciencias Exactas, Químicas y Naturales. Instituto de Materiales de Misiones; Argentina.
Fil: Schvezov, Carlos Enrique. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico (Nordeste). Instituto de Materiales de Misiones; Argentina.
Predictive microbiology is nowadays one of the main tools to understand microbial interactions and to assess the quantitative risk in foods. Several models have been developed in order to predict microorganism growth. The resulting model equations for the growth of interacting microorganisms include a number of parameters which must be determined for the specific conditions to be modeled. The most effective method to determine these parameters is inverse engineering. When it is required to fit more than one experimental growth curve simultaneously, the process is more complex since it is necessary to apply a multi- objective optimization procedure. In the present report a genetic algorithm is presented which is applied to obtain the best parameter values of a mechanistic model that permit the construction of the front of Pareto with 50 individuals or phenotypes. The method was applied to the growth of lactic acid bacteria (LAB) and Listeria monocytogenes, resulting in very low errors of 0.23 and 0.25 for the LAB and L. monocytogenes between model and experimental values, respectively. The method is very adequate for application in determining parameter values adjusted by inverse engineering giving very good results.
Materia
Predictive microbiology
Bacterial interactions
Parameter estimation
Genetic algorithm
Nivel de accesibilidad
acceso abierto
Condiciones de uso
Atribución-NoComercial-CompartirIgual 4.0 Internacional
Repositorio
Repositorio Institucional Digital de la Universidad Nacional de Misiones (UNaM)
Institución
Universidad Nacional de Misiones
OAI Identificador
oai:rid.unam.edu.ar:20.500.12219/4442

id RIDUNaM_b4f79a8fed4fce82f8e74a3a6d421d4b
oai_identifier_str oai:rid.unam.edu.ar:20.500.12219/4442
network_acronym_str RIDUNaM
repository_id_str
network_name_str Repositorio Institucional Digital de la Universidad Nacional de Misiones (UNaM)
spelling Genetic algorithm applied to parameter estimation of bacterial growth modelingPedrozo, Héctor AlejandroSchvezov, Carlos EnriquePredictive microbiologyBacterial interactionsParameter estimationGenetic algorithmFil: Pedrozo, Héctor Alejandro. Universidad Nacional de Misiones. Facultad de Ciencias Exactas, Químicas y Naturales. Instituto de Materiales de Misiones; Argentina.Fil: Pedrozo, Héctor Alejandro. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico (Nordeste). Instituto de Materiales de Misiones; Argentina.Fil: Schvezov, Carlos Enrique. Universidad Nacional de Misiones. Facultad de Ciencias Exactas, Químicas y Naturales. Instituto de Materiales de Misiones; Argentina.Fil: Schvezov, Carlos Enrique. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico (Nordeste). Instituto de Materiales de Misiones; Argentina.Predictive microbiology is nowadays one of the main tools to understand microbial interactions and to assess the quantitative risk in foods. Several models have been developed in order to predict microorganism growth. The resulting model equations for the growth of interacting microorganisms include a number of parameters which must be determined for the specific conditions to be modeled. The most effective method to determine these parameters is inverse engineering. When it is required to fit more than one experimental growth curve simultaneously, the process is more complex since it is necessary to apply a multi- objective optimization procedure. In the present report a genetic algorithm is presented which is applied to obtain the best parameter values of a mechanistic model that permit the construction of the front of Pareto with 50 individuals or phenotypes. The method was applied to the growth of lactic acid bacteria (LAB) and Listeria monocytogenes, resulting in very low errors of 0.23 and 0.25 for the LAB and L. monocytogenes between model and experimental values, respectively. The method is very adequate for application in determining parameter values adjusted by inverse engineering giving very good results.Elsevier2016-11-14info:eu-repo/semantics/articleinfo:eu-repo/semantics/drafthttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdf1.120 MBhttps://hdl.handle.net/20.500.12219/4442enginfo:eu-repo/semantics/openAccessAtribución-NoComercial-CompartirIgual 4.0 Internacionalhttp://creativecommons.org/licenses/by-nc-sa/4.0/reponame:Repositorio Institucional Digital de la Universidad Nacional de Misiones (UNaM)instname:Universidad Nacional de Misiones2025-09-29T15:02:20Zoai:rid.unam.edu.ar:20.500.12219/4442instacron:UNAMInstitucionalhttps://rid.unam.edu.ar/Universidad públicahttps://www.unam.edu.ar/https://rid.unam.edu.ar/oai/rsnrdArgentinaopendoar:2025-09-29 15:02:20.687Repositorio Institucional Digital de la Universidad Nacional de Misiones (UNaM) - Universidad Nacional de Misionesfalse
dc.title.none.fl_str_mv Genetic algorithm applied to parameter estimation of bacterial growth modeling
title Genetic algorithm applied to parameter estimation of bacterial growth modeling
spellingShingle Genetic algorithm applied to parameter estimation of bacterial growth modeling
Pedrozo, Héctor Alejandro
Predictive microbiology
Bacterial interactions
Parameter estimation
Genetic algorithm
title_short Genetic algorithm applied to parameter estimation of bacterial growth modeling
title_full Genetic algorithm applied to parameter estimation of bacterial growth modeling
title_fullStr Genetic algorithm applied to parameter estimation of bacterial growth modeling
title_full_unstemmed Genetic algorithm applied to parameter estimation of bacterial growth modeling
title_sort Genetic algorithm applied to parameter estimation of bacterial growth modeling
dc.creator.none.fl_str_mv Pedrozo, Héctor Alejandro
Schvezov, Carlos Enrique
author Pedrozo, Héctor Alejandro
author_facet Pedrozo, Héctor Alejandro
Schvezov, Carlos Enrique
author_role author
author2 Schvezov, Carlos Enrique
author2_role author
dc.subject.none.fl_str_mv Predictive microbiology
Bacterial interactions
Parameter estimation
Genetic algorithm
topic Predictive microbiology
Bacterial interactions
Parameter estimation
Genetic algorithm
dc.description.none.fl_txt_mv Fil: Pedrozo, Héctor Alejandro. Universidad Nacional de Misiones. Facultad de Ciencias Exactas, Químicas y Naturales. Instituto de Materiales de Misiones; Argentina.
Fil: Pedrozo, Héctor Alejandro. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico (Nordeste). Instituto de Materiales de Misiones; Argentina.
Fil: Schvezov, Carlos Enrique. Universidad Nacional de Misiones. Facultad de Ciencias Exactas, Químicas y Naturales. Instituto de Materiales de Misiones; Argentina.
Fil: Schvezov, Carlos Enrique. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico (Nordeste). Instituto de Materiales de Misiones; Argentina.
Predictive microbiology is nowadays one of the main tools to understand microbial interactions and to assess the quantitative risk in foods. Several models have been developed in order to predict microorganism growth. The resulting model equations for the growth of interacting microorganisms include a number of parameters which must be determined for the specific conditions to be modeled. The most effective method to determine these parameters is inverse engineering. When it is required to fit more than one experimental growth curve simultaneously, the process is more complex since it is necessary to apply a multi- objective optimization procedure. In the present report a genetic algorithm is presented which is applied to obtain the best parameter values of a mechanistic model that permit the construction of the front of Pareto with 50 individuals or phenotypes. The method was applied to the growth of lactic acid bacteria (LAB) and Listeria monocytogenes, resulting in very low errors of 0.23 and 0.25 for the LAB and L. monocytogenes between model and experimental values, respectively. The method is very adequate for application in determining parameter values adjusted by inverse engineering giving very good results.
description Fil: Pedrozo, Héctor Alejandro. Universidad Nacional de Misiones. Facultad de Ciencias Exactas, Químicas y Naturales. Instituto de Materiales de Misiones; Argentina.
publishDate 2016
dc.date.none.fl_str_mv 2016-11-14
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/draft
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str draft
dc.identifier.none.fl_str_mv https://hdl.handle.net/20.500.12219/4442
url https://hdl.handle.net/20.500.12219/4442
dc.language.none.fl_str_mv eng
language eng
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
Atribución-NoComercial-CompartirIgual 4.0 Internacional
http://creativecommons.org/licenses/by-nc-sa/4.0/
eu_rights_str_mv openAccess
rights_invalid_str_mv Atribución-NoComercial-CompartirIgual 4.0 Internacional
http://creativecommons.org/licenses/by-nc-sa/4.0/
dc.format.none.fl_str_mv application/pdf
application/pdf
1.120 MB
dc.publisher.none.fl_str_mv Elsevier
publisher.none.fl_str_mv Elsevier
dc.source.none.fl_str_mv reponame:Repositorio Institucional Digital de la Universidad Nacional de Misiones (UNaM)
instname:Universidad Nacional de Misiones
reponame_str Repositorio Institucional Digital de la Universidad Nacional de Misiones (UNaM)
collection Repositorio Institucional Digital de la Universidad Nacional de Misiones (UNaM)
instname_str Universidad Nacional de Misiones
repository.name.fl_str_mv Repositorio Institucional Digital de la Universidad Nacional de Misiones (UNaM) - Universidad Nacional de Misiones
repository.mail.fl_str_mv
_version_ 1844623285169422336
score 12.559606