Yeast Multi-Enzymatic Systems for Improving Colour Extraction, Technological Parameters and Antioxidant Activity of Wine

Autores
Longhi, Sara Jaquelina; Martín, María Carolina; Merín, María Gabriela; Morata, Vilma Ines
Año de publicación
2022
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
Research background. Wine yeasts are a heterogeneous microbial group with high en-zymatic potential that makes them a useful tool in winemaking. With a better understand-ing of their oenological properties, selection procedures can be optimised to obtain more efficient strains. The present study aims to isolate and select yeasts from wine grape surface by studying their production of enzymes that hydrolyse plant cell wall polymers and by linking them to different technological parameters and antioxidant activity of wines. Experimental approach. Yeasts that are able to produce carbohydrolases and related enzymes of oenological importance were firstly selected on plates and subsequently iden-tified. Then, a secondary selection of yeasts was carried out according to technological effects of their extracellular enzyme extracts on short macerations. In this way, the colour extraction, total polyphenol content, clarification, filterability and antioxidant activity were studied. This approach makes it possible to correlate the microorganism capacity to produce cell wall-depolymerizing enzymes with their technological effects. Results and conclusions. From 366 isolates, 96 strains (26.2 %) showed at least one of the polysaccharidase activities and 55 strains (57.3 %) of them exhibited activities of mul-tiple enzymes that degrade plant cell wall polymers. Sixteen strains were selected and identified as Aureobasidium, Candida, Debaryomyces, Hanseniaspora, Metschnikowia, Pichia, Saccharomyces and Torulaspora. Pectinolytic enzymes had the highest hydrolytic activity. Aureobasidium pullulans had a broader enzyme blend and higher activity, dominated by pectinases and followed by xylanases and cellulases. Moreover, the Torulaspora delbrueck-ii m7-2 strain produced high amounts of polysaccharidase and this was strain-dependent. Strains that produced enzyme extracts with a wide range of activities that were also the highest, also had the best chromatic and technological properties. Cluster analysis con-firmed that A. pullulans R-22, m11-2, m86-1 and m86-2 and T. delbrueckii m7-2 could be correlated with a better effect on filterability, clarification and extraction of bioactive com-pounds, encouraging future studies regarding their application in winemaking. Novelty and scientific contribution. The study of yeast multi-enzymatic systems impact-ing the grape maceration process enables a proper selection criterion for wine yeasts to improve colour extraction, technological parameters and antioxidant activity of Malbec wine. This work shows that A. pullulans and T. delbruekii have a high enzymatic potential for oenological purposes.
Fil: Longhi, Sara Jaquelina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mendoza; Argentina. Universidad Nacional de Cuyo. Facultad de Ciencias Aplicadas A la Industria. Departamento de Bromatología - Alimentación. Area Biología; Argentina
Fil: Martín, María Carolina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mendoza; Argentina. Universidad Nacional de Cuyo. Facultad de Ciencias Aplicadas A la Industria. Departamento de Bromatología - Alimentación. Area Biología; Argentina
Fil: Merín, María Gabriela. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mendoza; Argentina. Universidad Nacional de Cuyo. Facultad de Ciencias Aplicadas A la Industria. Departamento de Bromatología - Alimentación. Area Biología; Argentina
Fil: Morata, Vilma Ines. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mendoza; Argentina. Universidad Nacional de Cuyo. Facultad de Ciencias Aplicadas A la Industria. Departamento de Bromatología - Alimentación. Area Biología; Argentina
Materia
ANTIOXIDANT ACTIVITY
COLOUR EXTRACTION
TECHNOLOGICAL PARAMETERS
PLANT CELL WALL-DEPOLYMERIZING ENZYMES
WINEMAKING
YEAST
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/224434

id CONICETDig_90064832da30eb1690460d5357e1f763
oai_identifier_str oai:ri.conicet.gov.ar:11336/224434
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling Yeast Multi-Enzymatic Systems for Improving Colour Extraction, Technological Parameters and Antioxidant Activity of WineLonghi, Sara JaquelinaMartín, María CarolinaMerín, María GabrielaMorata, Vilma InesANTIOXIDANT ACTIVITYCOLOUR EXTRACTIONTECHNOLOGICAL PARAMETERSPLANT CELL WALL-DEPOLYMERIZING ENZYMESWINEMAKINGYEASThttps://purl.org/becyt/ford/2.9https://purl.org/becyt/ford/2Research background. Wine yeasts are a heterogeneous microbial group with high en-zymatic potential that makes them a useful tool in winemaking. With a better understand-ing of their oenological properties, selection procedures can be optimised to obtain more efficient strains. The present study aims to isolate and select yeasts from wine grape surface by studying their production of enzymes that hydrolyse plant cell wall polymers and by linking them to different technological parameters and antioxidant activity of wines. Experimental approach. Yeasts that are able to produce carbohydrolases and related enzymes of oenological importance were firstly selected on plates and subsequently iden-tified. Then, a secondary selection of yeasts was carried out according to technological effects of their extracellular enzyme extracts on short macerations. In this way, the colour extraction, total polyphenol content, clarification, filterability and antioxidant activity were studied. This approach makes it possible to correlate the microorganism capacity to produce cell wall-depolymerizing enzymes with their technological effects. Results and conclusions. From 366 isolates, 96 strains (26.2 %) showed at least one of the polysaccharidase activities and 55 strains (57.3 %) of them exhibited activities of mul-tiple enzymes that degrade plant cell wall polymers. Sixteen strains were selected and identified as Aureobasidium, Candida, Debaryomyces, Hanseniaspora, Metschnikowia, Pichia, Saccharomyces and Torulaspora. Pectinolytic enzymes had the highest hydrolytic activity. Aureobasidium pullulans had a broader enzyme blend and higher activity, dominated by pectinases and followed by xylanases and cellulases. Moreover, the Torulaspora delbrueck-ii m7-2 strain produced high amounts of polysaccharidase and this was strain-dependent. Strains that produced enzyme extracts with a wide range of activities that were also the highest, also had the best chromatic and technological properties. Cluster analysis con-firmed that A. pullulans R-22, m11-2, m86-1 and m86-2 and T. delbrueckii m7-2 could be correlated with a better effect on filterability, clarification and extraction of bioactive com-pounds, encouraging future studies regarding their application in winemaking. Novelty and scientific contribution. The study of yeast multi-enzymatic systems impact-ing the grape maceration process enables a proper selection criterion for wine yeasts to improve colour extraction, technological parameters and antioxidant activity of Malbec wine. This work shows that A. pullulans and T. delbruekii have a high enzymatic potential for oenological purposes.Fil: Longhi, Sara Jaquelina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mendoza; Argentina. Universidad Nacional de Cuyo. Facultad de Ciencias Aplicadas A la Industria. Departamento de Bromatología - Alimentación. Area Biología; ArgentinaFil: Martín, María Carolina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mendoza; Argentina. Universidad Nacional de Cuyo. Facultad de Ciencias Aplicadas A la Industria. Departamento de Bromatología - Alimentación. Area Biología; ArgentinaFil: Merín, María Gabriela. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mendoza; Argentina. Universidad Nacional de Cuyo. Facultad de Ciencias Aplicadas A la Industria. Departamento de Bromatología - Alimentación. Area Biología; ArgentinaFil: Morata, Vilma Ines. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mendoza; Argentina. Universidad Nacional de Cuyo. Facultad de Ciencias Aplicadas A la Industria. Departamento de Bromatología - Alimentación. Area Biología; ArgentinaUniversity of Zagreb. Faculty of Food Technology and Biotechnology2022-10info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/224434Longhi, Sara Jaquelina; Martín, María Carolina; Merín, María Gabriela; Morata, Vilma Ines; Yeast Multi-Enzymatic Systems for Improving Colour Extraction, Technological Parameters and Antioxidant Activity of Wine; University of Zagreb. Faculty of Food Technology and Biotechnology; Food Technology and Biotechnology; 60; 4; 10-2022; 556-5701330-98621334-2606CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/doi/10.17113/ftb.60.04.22.7777info:eu-repo/semantics/altIdentifier/url/https://www.ftb.com.hr/archives/1788-yeast-multi-enzymatic-systems-for-improving-colour-extraction-technological-parameters-and-antioxidant-activity-of-wineinfo:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-10-22T11:23:26Zoai:ri.conicet.gov.ar:11336/224434instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-10-22 11:23:26.48CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv Yeast Multi-Enzymatic Systems for Improving Colour Extraction, Technological Parameters and Antioxidant Activity of Wine
title Yeast Multi-Enzymatic Systems for Improving Colour Extraction, Technological Parameters and Antioxidant Activity of Wine
spellingShingle Yeast Multi-Enzymatic Systems for Improving Colour Extraction, Technological Parameters and Antioxidant Activity of Wine
Longhi, Sara Jaquelina
ANTIOXIDANT ACTIVITY
COLOUR EXTRACTION
TECHNOLOGICAL PARAMETERS
PLANT CELL WALL-DEPOLYMERIZING ENZYMES
WINEMAKING
YEAST
title_short Yeast Multi-Enzymatic Systems for Improving Colour Extraction, Technological Parameters and Antioxidant Activity of Wine
title_full Yeast Multi-Enzymatic Systems for Improving Colour Extraction, Technological Parameters and Antioxidant Activity of Wine
title_fullStr Yeast Multi-Enzymatic Systems for Improving Colour Extraction, Technological Parameters and Antioxidant Activity of Wine
title_full_unstemmed Yeast Multi-Enzymatic Systems for Improving Colour Extraction, Technological Parameters and Antioxidant Activity of Wine
title_sort Yeast Multi-Enzymatic Systems for Improving Colour Extraction, Technological Parameters and Antioxidant Activity of Wine
dc.creator.none.fl_str_mv Longhi, Sara Jaquelina
Martín, María Carolina
Merín, María Gabriela
Morata, Vilma Ines
author Longhi, Sara Jaquelina
author_facet Longhi, Sara Jaquelina
Martín, María Carolina
Merín, María Gabriela
Morata, Vilma Ines
author_role author
author2 Martín, María Carolina
Merín, María Gabriela
Morata, Vilma Ines
author2_role author
author
author
dc.subject.none.fl_str_mv ANTIOXIDANT ACTIVITY
COLOUR EXTRACTION
TECHNOLOGICAL PARAMETERS
PLANT CELL WALL-DEPOLYMERIZING ENZYMES
WINEMAKING
YEAST
topic ANTIOXIDANT ACTIVITY
COLOUR EXTRACTION
TECHNOLOGICAL PARAMETERS
PLANT CELL WALL-DEPOLYMERIZING ENZYMES
WINEMAKING
YEAST
purl_subject.fl_str_mv https://purl.org/becyt/ford/2.9
https://purl.org/becyt/ford/2
dc.description.none.fl_txt_mv Research background. Wine yeasts are a heterogeneous microbial group with high en-zymatic potential that makes them a useful tool in winemaking. With a better understand-ing of their oenological properties, selection procedures can be optimised to obtain more efficient strains. The present study aims to isolate and select yeasts from wine grape surface by studying their production of enzymes that hydrolyse plant cell wall polymers and by linking them to different technological parameters and antioxidant activity of wines. Experimental approach. Yeasts that are able to produce carbohydrolases and related enzymes of oenological importance were firstly selected on plates and subsequently iden-tified. Then, a secondary selection of yeasts was carried out according to technological effects of their extracellular enzyme extracts on short macerations. In this way, the colour extraction, total polyphenol content, clarification, filterability and antioxidant activity were studied. This approach makes it possible to correlate the microorganism capacity to produce cell wall-depolymerizing enzymes with their technological effects. Results and conclusions. From 366 isolates, 96 strains (26.2 %) showed at least one of the polysaccharidase activities and 55 strains (57.3 %) of them exhibited activities of mul-tiple enzymes that degrade plant cell wall polymers. Sixteen strains were selected and identified as Aureobasidium, Candida, Debaryomyces, Hanseniaspora, Metschnikowia, Pichia, Saccharomyces and Torulaspora. Pectinolytic enzymes had the highest hydrolytic activity. Aureobasidium pullulans had a broader enzyme blend and higher activity, dominated by pectinases and followed by xylanases and cellulases. Moreover, the Torulaspora delbrueck-ii m7-2 strain produced high amounts of polysaccharidase and this was strain-dependent. Strains that produced enzyme extracts with a wide range of activities that were also the highest, also had the best chromatic and technological properties. Cluster analysis con-firmed that A. pullulans R-22, m11-2, m86-1 and m86-2 and T. delbrueckii m7-2 could be correlated with a better effect on filterability, clarification and extraction of bioactive com-pounds, encouraging future studies regarding their application in winemaking. Novelty and scientific contribution. The study of yeast multi-enzymatic systems impact-ing the grape maceration process enables a proper selection criterion for wine yeasts to improve colour extraction, technological parameters and antioxidant activity of Malbec wine. This work shows that A. pullulans and T. delbruekii have a high enzymatic potential for oenological purposes.
Fil: Longhi, Sara Jaquelina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mendoza; Argentina. Universidad Nacional de Cuyo. Facultad de Ciencias Aplicadas A la Industria. Departamento de Bromatología - Alimentación. Area Biología; Argentina
Fil: Martín, María Carolina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mendoza; Argentina. Universidad Nacional de Cuyo. Facultad de Ciencias Aplicadas A la Industria. Departamento de Bromatología - Alimentación. Area Biología; Argentina
Fil: Merín, María Gabriela. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mendoza; Argentina. Universidad Nacional de Cuyo. Facultad de Ciencias Aplicadas A la Industria. Departamento de Bromatología - Alimentación. Area Biología; Argentina
Fil: Morata, Vilma Ines. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mendoza; Argentina. Universidad Nacional de Cuyo. Facultad de Ciencias Aplicadas A la Industria. Departamento de Bromatología - Alimentación. Area Biología; Argentina
description Research background. Wine yeasts are a heterogeneous microbial group with high en-zymatic potential that makes them a useful tool in winemaking. With a better understand-ing of their oenological properties, selection procedures can be optimised to obtain more efficient strains. The present study aims to isolate and select yeasts from wine grape surface by studying their production of enzymes that hydrolyse plant cell wall polymers and by linking them to different technological parameters and antioxidant activity of wines. Experimental approach. Yeasts that are able to produce carbohydrolases and related enzymes of oenological importance were firstly selected on plates and subsequently iden-tified. Then, a secondary selection of yeasts was carried out according to technological effects of their extracellular enzyme extracts on short macerations. In this way, the colour extraction, total polyphenol content, clarification, filterability and antioxidant activity were studied. This approach makes it possible to correlate the microorganism capacity to produce cell wall-depolymerizing enzymes with their technological effects. Results and conclusions. From 366 isolates, 96 strains (26.2 %) showed at least one of the polysaccharidase activities and 55 strains (57.3 %) of them exhibited activities of mul-tiple enzymes that degrade plant cell wall polymers. Sixteen strains were selected and identified as Aureobasidium, Candida, Debaryomyces, Hanseniaspora, Metschnikowia, Pichia, Saccharomyces and Torulaspora. Pectinolytic enzymes had the highest hydrolytic activity. Aureobasidium pullulans had a broader enzyme blend and higher activity, dominated by pectinases and followed by xylanases and cellulases. Moreover, the Torulaspora delbrueck-ii m7-2 strain produced high amounts of polysaccharidase and this was strain-dependent. Strains that produced enzyme extracts with a wide range of activities that were also the highest, also had the best chromatic and technological properties. Cluster analysis con-firmed that A. pullulans R-22, m11-2, m86-1 and m86-2 and T. delbrueckii m7-2 could be correlated with a better effect on filterability, clarification and extraction of bioactive com-pounds, encouraging future studies regarding their application in winemaking. Novelty and scientific contribution. The study of yeast multi-enzymatic systems impact-ing the grape maceration process enables a proper selection criterion for wine yeasts to improve colour extraction, technological parameters and antioxidant activity of Malbec wine. This work shows that A. pullulans and T. delbruekii have a high enzymatic potential for oenological purposes.
publishDate 2022
dc.date.none.fl_str_mv 2022-10
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/224434
Longhi, Sara Jaquelina; Martín, María Carolina; Merín, María Gabriela; Morata, Vilma Ines; Yeast Multi-Enzymatic Systems for Improving Colour Extraction, Technological Parameters and Antioxidant Activity of Wine; University of Zagreb. Faculty of Food Technology and Biotechnology; Food Technology and Biotechnology; 60; 4; 10-2022; 556-570
1330-9862
1334-2606
CONICET Digital
CONICET
url http://hdl.handle.net/11336/224434
identifier_str_mv Longhi, Sara Jaquelina; Martín, María Carolina; Merín, María Gabriela; Morata, Vilma Ines; Yeast Multi-Enzymatic Systems for Improving Colour Extraction, Technological Parameters and Antioxidant Activity of Wine; University of Zagreb. Faculty of Food Technology and Biotechnology; Food Technology and Biotechnology; 60; 4; 10-2022; 556-570
1330-9862
1334-2606
CONICET Digital
CONICET
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/doi/10.17113/ftb.60.04.22.7777
info:eu-repo/semantics/altIdentifier/url/https://www.ftb.com.hr/archives/1788-yeast-multi-enzymatic-systems-for-improving-colour-extraction-technological-parameters-and-antioxidant-activity-of-wine
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
application/pdf
application/pdf
dc.publisher.none.fl_str_mv University of Zagreb. Faculty of Food Technology and Biotechnology
publisher.none.fl_str_mv University of Zagreb. Faculty of Food Technology and Biotechnology
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1846781762820112384
score 12.982451