Effects of magnetic field gradients on the aggregation dynamics of colloidal magnetic nanoparticles

Autores
Heinrich, D.; Goñi, A. R.; Osán, Tristán Martín; Cerioni, Lucas Matias Ceferino; Smessaert, A.; Klapp, S. H. L.; Faraudo, J.; Pusiol, Daniel Jose; Thomsen, C.
Año de publicación
2015
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
We have used low-field 1H nuclear-magnetic resonance (NMR) spectroscopy and molecular dynamics (MD) to investigate the aggregation dynamics of magnetic particles in ionic ferrofluids (IFFs) in the presence of magnetic field gradients. At the beginning of the experiments, the measured NMR spectra were broad and asymmetric, exhibiting two features attributed to different dynamical environments of water protons, depending on the local strength of the field gradients. Hence, the spatial redistribution of the magnetic particles in the ferrofluid caused by the presence of an external magnetic field in a time scale of minutes can be monitored in real time, following the changes in the features of the NMR spectra during a period of about an hour. As previously reported [Heinrich et al., Phys. Rev. Lett., 2011, 106, 208301], in the homogeneous magnetic field of a NMR spectrometer, the aggregation of the particles of the IFF proceeds in two stages. The first stage corresponds to the gradual aggregation of monomers prior to and during the formation of chain-like structures. The second stage proceeds after the chains have reached a critical average length, favoring lateral association of the strings into hexagonal zipped-chain superstructures or bundles. In this work, we focus on the influence of a strongly inhomogeneous magnetic field on the aforementioned aggregation dynamics. The main observation is that, as the sample is immersed in a certain magnetic field gradient and kept there for a time τinh, magnetophoresis rapidly converts the ferrofluid into an aggregation state which finds its correspondence to a state on the evolution curve of the pristine sample in a homogeneous field. From the degree of aggregation reached at the time τinh, the IFF sample just evolves thereafter in the homogeneous field of the NMR spectrometer in exactly the same way as the pristine sample. The final equilibrium state always consists of a colloidal suspension of zipped-chain bundles with the chain axes aligned along the magnetic field direction.
Fil: Heinrich, D.. Technishe Universitat Berlin; Alemania
Fil: Goñi, A. R.. Consejo Superior de Investigaciones Científicas. Instituto de Ciencia de los Materiales de Barcelona; España
Fil: Osán, Tristán Martín. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Instituto de Física Enrique Gaviola. Universidad Nacional de Córdoba. Instituto de Física Enrique Gaviola; Argentina
Fil: Cerioni, Lucas Matias Ceferino. Spinlock S.r.l; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
Fil: Smessaert, A.. Technishe Universitat Berlin; Alemania
Fil: Klapp, S. H. L.. Technishe Universitat Berlin; Alemania
Fil: Faraudo, J.. Consejo Superior de Investigaciones Científicas. Instituto de Ciencia de los Materiales de Barcelona; España
Fil: Pusiol, Daniel Jose. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
Fil: Thomsen, C.. Technishe Universitat Berlin; Alemania
Materia
NANO PARTICLES
MAGNETIC RESONANCE
COLLOIDS
MAGNETIC PARTICLES
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/186220

id CONICETDig_8e9d0f4793cfa61f322ed4e65701b8d1
oai_identifier_str oai:ri.conicet.gov.ar:11336/186220
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling Effects of magnetic field gradients on the aggregation dynamics of colloidal magnetic nanoparticlesHeinrich, D.Goñi, A. R.Osán, Tristán MartínCerioni, Lucas Matias CeferinoSmessaert, A.Klapp, S. H. L.Faraudo, J.Pusiol, Daniel JoseThomsen, C.NANO PARTICLESMAGNETIC RESONANCECOLLOIDSMAGNETIC PARTICLEShttps://purl.org/becyt/ford/1.3https://purl.org/becyt/ford/1We have used low-field 1H nuclear-magnetic resonance (NMR) spectroscopy and molecular dynamics (MD) to investigate the aggregation dynamics of magnetic particles in ionic ferrofluids (IFFs) in the presence of magnetic field gradients. At the beginning of the experiments, the measured NMR spectra were broad and asymmetric, exhibiting two features attributed to different dynamical environments of water protons, depending on the local strength of the field gradients. Hence, the spatial redistribution of the magnetic particles in the ferrofluid caused by the presence of an external magnetic field in a time scale of minutes can be monitored in real time, following the changes in the features of the NMR spectra during a period of about an hour. As previously reported [Heinrich et al., Phys. Rev. Lett., 2011, 106, 208301], in the homogeneous magnetic field of a NMR spectrometer, the aggregation of the particles of the IFF proceeds in two stages. The first stage corresponds to the gradual aggregation of monomers prior to and during the formation of chain-like structures. The second stage proceeds after the chains have reached a critical average length, favoring lateral association of the strings into hexagonal zipped-chain superstructures or bundles. In this work, we focus on the influence of a strongly inhomogeneous magnetic field on the aforementioned aggregation dynamics. The main observation is that, as the sample is immersed in a certain magnetic field gradient and kept there for a time τinh, magnetophoresis rapidly converts the ferrofluid into an aggregation state which finds its correspondence to a state on the evolution curve of the pristine sample in a homogeneous field. From the degree of aggregation reached at the time τinh, the IFF sample just evolves thereafter in the homogeneous field of the NMR spectrometer in exactly the same way as the pristine sample. The final equilibrium state always consists of a colloidal suspension of zipped-chain bundles with the chain axes aligned along the magnetic field direction.Fil: Heinrich, D.. Technishe Universitat Berlin; AlemaniaFil: Goñi, A. R.. Consejo Superior de Investigaciones Científicas. Instituto de Ciencia de los Materiales de Barcelona; EspañaFil: Osán, Tristán Martín. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Instituto de Física Enrique Gaviola. Universidad Nacional de Córdoba. Instituto de Física Enrique Gaviola; ArgentinaFil: Cerioni, Lucas Matias Ceferino. Spinlock S.r.l; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Smessaert, A.. Technishe Universitat Berlin; AlemaniaFil: Klapp, S. H. L.. Technishe Universitat Berlin; AlemaniaFil: Faraudo, J.. Consejo Superior de Investigaciones Científicas. Instituto de Ciencia de los Materiales de Barcelona; EspañaFil: Pusiol, Daniel Jose. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Thomsen, C.. Technishe Universitat Berlin; AlemaniaRoyal Society of Chemistry2015-08info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/186220Heinrich, D.; Goñi, A. R.; Osán, Tristán Martín; Cerioni, Lucas Matias Ceferino; Smessaert, A.; et al.; Effects of magnetic field gradients on the aggregation dynamics of colloidal magnetic nanoparticles; Royal Society of Chemistry; Soft Matter; 11; 38; 8-2015; 7606-76161744-683XCONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/doi/10.1039/c5sm00541hinfo:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T10:40:03Zoai:ri.conicet.gov.ar:11336/186220instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 10:40:04.01CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv Effects of magnetic field gradients on the aggregation dynamics of colloidal magnetic nanoparticles
title Effects of magnetic field gradients on the aggregation dynamics of colloidal magnetic nanoparticles
spellingShingle Effects of magnetic field gradients on the aggregation dynamics of colloidal magnetic nanoparticles
Heinrich, D.
NANO PARTICLES
MAGNETIC RESONANCE
COLLOIDS
MAGNETIC PARTICLES
title_short Effects of magnetic field gradients on the aggregation dynamics of colloidal magnetic nanoparticles
title_full Effects of magnetic field gradients on the aggregation dynamics of colloidal magnetic nanoparticles
title_fullStr Effects of magnetic field gradients on the aggregation dynamics of colloidal magnetic nanoparticles
title_full_unstemmed Effects of magnetic field gradients on the aggregation dynamics of colloidal magnetic nanoparticles
title_sort Effects of magnetic field gradients on the aggregation dynamics of colloidal magnetic nanoparticles
dc.creator.none.fl_str_mv Heinrich, D.
Goñi, A. R.
Osán, Tristán Martín
Cerioni, Lucas Matias Ceferino
Smessaert, A.
Klapp, S. H. L.
Faraudo, J.
Pusiol, Daniel Jose
Thomsen, C.
author Heinrich, D.
author_facet Heinrich, D.
Goñi, A. R.
Osán, Tristán Martín
Cerioni, Lucas Matias Ceferino
Smessaert, A.
Klapp, S. H. L.
Faraudo, J.
Pusiol, Daniel Jose
Thomsen, C.
author_role author
author2 Goñi, A. R.
Osán, Tristán Martín
Cerioni, Lucas Matias Ceferino
Smessaert, A.
Klapp, S. H. L.
Faraudo, J.
Pusiol, Daniel Jose
Thomsen, C.
author2_role author
author
author
author
author
author
author
author
dc.subject.none.fl_str_mv NANO PARTICLES
MAGNETIC RESONANCE
COLLOIDS
MAGNETIC PARTICLES
topic NANO PARTICLES
MAGNETIC RESONANCE
COLLOIDS
MAGNETIC PARTICLES
purl_subject.fl_str_mv https://purl.org/becyt/ford/1.3
https://purl.org/becyt/ford/1
dc.description.none.fl_txt_mv We have used low-field 1H nuclear-magnetic resonance (NMR) spectroscopy and molecular dynamics (MD) to investigate the aggregation dynamics of magnetic particles in ionic ferrofluids (IFFs) in the presence of magnetic field gradients. At the beginning of the experiments, the measured NMR spectra were broad and asymmetric, exhibiting two features attributed to different dynamical environments of water protons, depending on the local strength of the field gradients. Hence, the spatial redistribution of the magnetic particles in the ferrofluid caused by the presence of an external magnetic field in a time scale of minutes can be monitored in real time, following the changes in the features of the NMR spectra during a period of about an hour. As previously reported [Heinrich et al., Phys. Rev. Lett., 2011, 106, 208301], in the homogeneous magnetic field of a NMR spectrometer, the aggregation of the particles of the IFF proceeds in two stages. The first stage corresponds to the gradual aggregation of monomers prior to and during the formation of chain-like structures. The second stage proceeds after the chains have reached a critical average length, favoring lateral association of the strings into hexagonal zipped-chain superstructures or bundles. In this work, we focus on the influence of a strongly inhomogeneous magnetic field on the aforementioned aggregation dynamics. The main observation is that, as the sample is immersed in a certain magnetic field gradient and kept there for a time τinh, magnetophoresis rapidly converts the ferrofluid into an aggregation state which finds its correspondence to a state on the evolution curve of the pristine sample in a homogeneous field. From the degree of aggregation reached at the time τinh, the IFF sample just evolves thereafter in the homogeneous field of the NMR spectrometer in exactly the same way as the pristine sample. The final equilibrium state always consists of a colloidal suspension of zipped-chain bundles with the chain axes aligned along the magnetic field direction.
Fil: Heinrich, D.. Technishe Universitat Berlin; Alemania
Fil: Goñi, A. R.. Consejo Superior de Investigaciones Científicas. Instituto de Ciencia de los Materiales de Barcelona; España
Fil: Osán, Tristán Martín. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Instituto de Física Enrique Gaviola. Universidad Nacional de Córdoba. Instituto de Física Enrique Gaviola; Argentina
Fil: Cerioni, Lucas Matias Ceferino. Spinlock S.r.l; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
Fil: Smessaert, A.. Technishe Universitat Berlin; Alemania
Fil: Klapp, S. H. L.. Technishe Universitat Berlin; Alemania
Fil: Faraudo, J.. Consejo Superior de Investigaciones Científicas. Instituto de Ciencia de los Materiales de Barcelona; España
Fil: Pusiol, Daniel Jose. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
Fil: Thomsen, C.. Technishe Universitat Berlin; Alemania
description We have used low-field 1H nuclear-magnetic resonance (NMR) spectroscopy and molecular dynamics (MD) to investigate the aggregation dynamics of magnetic particles in ionic ferrofluids (IFFs) in the presence of magnetic field gradients. At the beginning of the experiments, the measured NMR spectra were broad and asymmetric, exhibiting two features attributed to different dynamical environments of water protons, depending on the local strength of the field gradients. Hence, the spatial redistribution of the magnetic particles in the ferrofluid caused by the presence of an external magnetic field in a time scale of minutes can be monitored in real time, following the changes in the features of the NMR spectra during a period of about an hour. As previously reported [Heinrich et al., Phys. Rev. Lett., 2011, 106, 208301], in the homogeneous magnetic field of a NMR spectrometer, the aggregation of the particles of the IFF proceeds in two stages. The first stage corresponds to the gradual aggregation of monomers prior to and during the formation of chain-like structures. The second stage proceeds after the chains have reached a critical average length, favoring lateral association of the strings into hexagonal zipped-chain superstructures or bundles. In this work, we focus on the influence of a strongly inhomogeneous magnetic field on the aforementioned aggregation dynamics. The main observation is that, as the sample is immersed in a certain magnetic field gradient and kept there for a time τinh, magnetophoresis rapidly converts the ferrofluid into an aggregation state which finds its correspondence to a state on the evolution curve of the pristine sample in a homogeneous field. From the degree of aggregation reached at the time τinh, the IFF sample just evolves thereafter in the homogeneous field of the NMR spectrometer in exactly the same way as the pristine sample. The final equilibrium state always consists of a colloidal suspension of zipped-chain bundles with the chain axes aligned along the magnetic field direction.
publishDate 2015
dc.date.none.fl_str_mv 2015-08
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/186220
Heinrich, D.; Goñi, A. R.; Osán, Tristán Martín; Cerioni, Lucas Matias Ceferino; Smessaert, A.; et al.; Effects of magnetic field gradients on the aggregation dynamics of colloidal magnetic nanoparticles; Royal Society of Chemistry; Soft Matter; 11; 38; 8-2015; 7606-7616
1744-683X
CONICET Digital
CONICET
url http://hdl.handle.net/11336/186220
identifier_str_mv Heinrich, D.; Goñi, A. R.; Osán, Tristán Martín; Cerioni, Lucas Matias Ceferino; Smessaert, A.; et al.; Effects of magnetic field gradients on the aggregation dynamics of colloidal magnetic nanoparticles; Royal Society of Chemistry; Soft Matter; 11; 38; 8-2015; 7606-7616
1744-683X
CONICET Digital
CONICET
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/doi/10.1039/c5sm00541h
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
dc.publisher.none.fl_str_mv Royal Society of Chemistry
publisher.none.fl_str_mv Royal Society of Chemistry
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1844614427637186560
score 13.070432