Effects of magnetic field gradients on the aggregation dynamics of colloidal magnetic nanoparticles
- Autores
- Heinrich, D.; Goñi, A. R.; Osán, Tristán Martín; Cerioni, Lucas Matias Ceferino; Smessaert, A.; Klapp, S. H. L.; Faraudo, J.; Pusiol, Daniel Jose; Thomsen, C.
- Año de publicación
- 2015
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- We have used low-field 1H nuclear-magnetic resonance (NMR) spectroscopy and molecular dynamics (MD) to investigate the aggregation dynamics of magnetic particles in ionic ferrofluids (IFFs) in the presence of magnetic field gradients. At the beginning of the experiments, the measured NMR spectra were broad and asymmetric, exhibiting two features attributed to different dynamical environments of water protons, depending on the local strength of the field gradients. Hence, the spatial redistribution of the magnetic particles in the ferrofluid caused by the presence of an external magnetic field in a time scale of minutes can be monitored in real time, following the changes in the features of the NMR spectra during a period of about an hour. As previously reported [Heinrich et al., Phys. Rev. Lett., 2011, 106, 208301], in the homogeneous magnetic field of a NMR spectrometer, the aggregation of the particles of the IFF proceeds in two stages. The first stage corresponds to the gradual aggregation of monomers prior to and during the formation of chain-like structures. The second stage proceeds after the chains have reached a critical average length, favoring lateral association of the strings into hexagonal zipped-chain superstructures or bundles. In this work, we focus on the influence of a strongly inhomogeneous magnetic field on the aforementioned aggregation dynamics. The main observation is that, as the sample is immersed in a certain magnetic field gradient and kept there for a time τinh, magnetophoresis rapidly converts the ferrofluid into an aggregation state which finds its correspondence to a state on the evolution curve of the pristine sample in a homogeneous field. From the degree of aggregation reached at the time τinh, the IFF sample just evolves thereafter in the homogeneous field of the NMR spectrometer in exactly the same way as the pristine sample. The final equilibrium state always consists of a colloidal suspension of zipped-chain bundles with the chain axes aligned along the magnetic field direction.
Fil: Heinrich, D.. Technishe Universitat Berlin; Alemania
Fil: Goñi, A. R.. Consejo Superior de Investigaciones Científicas. Instituto de Ciencia de los Materiales de Barcelona; España
Fil: Osán, Tristán Martín. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Instituto de Física Enrique Gaviola. Universidad Nacional de Córdoba. Instituto de Física Enrique Gaviola; Argentina
Fil: Cerioni, Lucas Matias Ceferino. Spinlock S.r.l; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
Fil: Smessaert, A.. Technishe Universitat Berlin; Alemania
Fil: Klapp, S. H. L.. Technishe Universitat Berlin; Alemania
Fil: Faraudo, J.. Consejo Superior de Investigaciones Científicas. Instituto de Ciencia de los Materiales de Barcelona; España
Fil: Pusiol, Daniel Jose. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
Fil: Thomsen, C.. Technishe Universitat Berlin; Alemania - Materia
-
NANO PARTICLES
MAGNETIC RESONANCE
COLLOIDS
MAGNETIC PARTICLES - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/186220
Ver los metadatos del registro completo
id |
CONICETDig_8e9d0f4793cfa61f322ed4e65701b8d1 |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/186220 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Effects of magnetic field gradients on the aggregation dynamics of colloidal magnetic nanoparticlesHeinrich, D.Goñi, A. R.Osán, Tristán MartínCerioni, Lucas Matias CeferinoSmessaert, A.Klapp, S. H. L.Faraudo, J.Pusiol, Daniel JoseThomsen, C.NANO PARTICLESMAGNETIC RESONANCECOLLOIDSMAGNETIC PARTICLEShttps://purl.org/becyt/ford/1.3https://purl.org/becyt/ford/1We have used low-field 1H nuclear-magnetic resonance (NMR) spectroscopy and molecular dynamics (MD) to investigate the aggregation dynamics of magnetic particles in ionic ferrofluids (IFFs) in the presence of magnetic field gradients. At the beginning of the experiments, the measured NMR spectra were broad and asymmetric, exhibiting two features attributed to different dynamical environments of water protons, depending on the local strength of the field gradients. Hence, the spatial redistribution of the magnetic particles in the ferrofluid caused by the presence of an external magnetic field in a time scale of minutes can be monitored in real time, following the changes in the features of the NMR spectra during a period of about an hour. As previously reported [Heinrich et al., Phys. Rev. Lett., 2011, 106, 208301], in the homogeneous magnetic field of a NMR spectrometer, the aggregation of the particles of the IFF proceeds in two stages. The first stage corresponds to the gradual aggregation of monomers prior to and during the formation of chain-like structures. The second stage proceeds after the chains have reached a critical average length, favoring lateral association of the strings into hexagonal zipped-chain superstructures or bundles. In this work, we focus on the influence of a strongly inhomogeneous magnetic field on the aforementioned aggregation dynamics. The main observation is that, as the sample is immersed in a certain magnetic field gradient and kept there for a time τinh, magnetophoresis rapidly converts the ferrofluid into an aggregation state which finds its correspondence to a state on the evolution curve of the pristine sample in a homogeneous field. From the degree of aggregation reached at the time τinh, the IFF sample just evolves thereafter in the homogeneous field of the NMR spectrometer in exactly the same way as the pristine sample. The final equilibrium state always consists of a colloidal suspension of zipped-chain bundles with the chain axes aligned along the magnetic field direction.Fil: Heinrich, D.. Technishe Universitat Berlin; AlemaniaFil: Goñi, A. R.. Consejo Superior de Investigaciones Científicas. Instituto de Ciencia de los Materiales de Barcelona; EspañaFil: Osán, Tristán Martín. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Instituto de Física Enrique Gaviola. Universidad Nacional de Córdoba. Instituto de Física Enrique Gaviola; ArgentinaFil: Cerioni, Lucas Matias Ceferino. Spinlock S.r.l; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Smessaert, A.. Technishe Universitat Berlin; AlemaniaFil: Klapp, S. H. L.. Technishe Universitat Berlin; AlemaniaFil: Faraudo, J.. Consejo Superior de Investigaciones Científicas. Instituto de Ciencia de los Materiales de Barcelona; EspañaFil: Pusiol, Daniel Jose. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Thomsen, C.. Technishe Universitat Berlin; AlemaniaRoyal Society of Chemistry2015-08info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/186220Heinrich, D.; Goñi, A. R.; Osán, Tristán Martín; Cerioni, Lucas Matias Ceferino; Smessaert, A.; et al.; Effects of magnetic field gradients on the aggregation dynamics of colloidal magnetic nanoparticles; Royal Society of Chemistry; Soft Matter; 11; 38; 8-2015; 7606-76161744-683XCONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/doi/10.1039/c5sm00541hinfo:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T10:40:03Zoai:ri.conicet.gov.ar:11336/186220instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 10:40:04.01CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Effects of magnetic field gradients on the aggregation dynamics of colloidal magnetic nanoparticles |
title |
Effects of magnetic field gradients on the aggregation dynamics of colloidal magnetic nanoparticles |
spellingShingle |
Effects of magnetic field gradients on the aggregation dynamics of colloidal magnetic nanoparticles Heinrich, D. NANO PARTICLES MAGNETIC RESONANCE COLLOIDS MAGNETIC PARTICLES |
title_short |
Effects of magnetic field gradients on the aggregation dynamics of colloidal magnetic nanoparticles |
title_full |
Effects of magnetic field gradients on the aggregation dynamics of colloidal magnetic nanoparticles |
title_fullStr |
Effects of magnetic field gradients on the aggregation dynamics of colloidal magnetic nanoparticles |
title_full_unstemmed |
Effects of magnetic field gradients on the aggregation dynamics of colloidal magnetic nanoparticles |
title_sort |
Effects of magnetic field gradients on the aggregation dynamics of colloidal magnetic nanoparticles |
dc.creator.none.fl_str_mv |
Heinrich, D. Goñi, A. R. Osán, Tristán Martín Cerioni, Lucas Matias Ceferino Smessaert, A. Klapp, S. H. L. Faraudo, J. Pusiol, Daniel Jose Thomsen, C. |
author |
Heinrich, D. |
author_facet |
Heinrich, D. Goñi, A. R. Osán, Tristán Martín Cerioni, Lucas Matias Ceferino Smessaert, A. Klapp, S. H. L. Faraudo, J. Pusiol, Daniel Jose Thomsen, C. |
author_role |
author |
author2 |
Goñi, A. R. Osán, Tristán Martín Cerioni, Lucas Matias Ceferino Smessaert, A. Klapp, S. H. L. Faraudo, J. Pusiol, Daniel Jose Thomsen, C. |
author2_role |
author author author author author author author author |
dc.subject.none.fl_str_mv |
NANO PARTICLES MAGNETIC RESONANCE COLLOIDS MAGNETIC PARTICLES |
topic |
NANO PARTICLES MAGNETIC RESONANCE COLLOIDS MAGNETIC PARTICLES |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.3 https://purl.org/becyt/ford/1 |
dc.description.none.fl_txt_mv |
We have used low-field 1H nuclear-magnetic resonance (NMR) spectroscopy and molecular dynamics (MD) to investigate the aggregation dynamics of magnetic particles in ionic ferrofluids (IFFs) in the presence of magnetic field gradients. At the beginning of the experiments, the measured NMR spectra were broad and asymmetric, exhibiting two features attributed to different dynamical environments of water protons, depending on the local strength of the field gradients. Hence, the spatial redistribution of the magnetic particles in the ferrofluid caused by the presence of an external magnetic field in a time scale of minutes can be monitored in real time, following the changes in the features of the NMR spectra during a period of about an hour. As previously reported [Heinrich et al., Phys. Rev. Lett., 2011, 106, 208301], in the homogeneous magnetic field of a NMR spectrometer, the aggregation of the particles of the IFF proceeds in two stages. The first stage corresponds to the gradual aggregation of monomers prior to and during the formation of chain-like structures. The second stage proceeds after the chains have reached a critical average length, favoring lateral association of the strings into hexagonal zipped-chain superstructures or bundles. In this work, we focus on the influence of a strongly inhomogeneous magnetic field on the aforementioned aggregation dynamics. The main observation is that, as the sample is immersed in a certain magnetic field gradient and kept there for a time τinh, magnetophoresis rapidly converts the ferrofluid into an aggregation state which finds its correspondence to a state on the evolution curve of the pristine sample in a homogeneous field. From the degree of aggregation reached at the time τinh, the IFF sample just evolves thereafter in the homogeneous field of the NMR spectrometer in exactly the same way as the pristine sample. The final equilibrium state always consists of a colloidal suspension of zipped-chain bundles with the chain axes aligned along the magnetic field direction. Fil: Heinrich, D.. Technishe Universitat Berlin; Alemania Fil: Goñi, A. R.. Consejo Superior de Investigaciones Científicas. Instituto de Ciencia de los Materiales de Barcelona; España Fil: Osán, Tristán Martín. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Instituto de Física Enrique Gaviola. Universidad Nacional de Córdoba. Instituto de Física Enrique Gaviola; Argentina Fil: Cerioni, Lucas Matias Ceferino. Spinlock S.r.l; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina Fil: Smessaert, A.. Technishe Universitat Berlin; Alemania Fil: Klapp, S. H. L.. Technishe Universitat Berlin; Alemania Fil: Faraudo, J.. Consejo Superior de Investigaciones Científicas. Instituto de Ciencia de los Materiales de Barcelona; España Fil: Pusiol, Daniel Jose. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina Fil: Thomsen, C.. Technishe Universitat Berlin; Alemania |
description |
We have used low-field 1H nuclear-magnetic resonance (NMR) spectroscopy and molecular dynamics (MD) to investigate the aggregation dynamics of magnetic particles in ionic ferrofluids (IFFs) in the presence of magnetic field gradients. At the beginning of the experiments, the measured NMR spectra were broad and asymmetric, exhibiting two features attributed to different dynamical environments of water protons, depending on the local strength of the field gradients. Hence, the spatial redistribution of the magnetic particles in the ferrofluid caused by the presence of an external magnetic field in a time scale of minutes can be monitored in real time, following the changes in the features of the NMR spectra during a period of about an hour. As previously reported [Heinrich et al., Phys. Rev. Lett., 2011, 106, 208301], in the homogeneous magnetic field of a NMR spectrometer, the aggregation of the particles of the IFF proceeds in two stages. The first stage corresponds to the gradual aggregation of monomers prior to and during the formation of chain-like structures. The second stage proceeds after the chains have reached a critical average length, favoring lateral association of the strings into hexagonal zipped-chain superstructures or bundles. In this work, we focus on the influence of a strongly inhomogeneous magnetic field on the aforementioned aggregation dynamics. The main observation is that, as the sample is immersed in a certain magnetic field gradient and kept there for a time τinh, magnetophoresis rapidly converts the ferrofluid into an aggregation state which finds its correspondence to a state on the evolution curve of the pristine sample in a homogeneous field. From the degree of aggregation reached at the time τinh, the IFF sample just evolves thereafter in the homogeneous field of the NMR spectrometer in exactly the same way as the pristine sample. The final equilibrium state always consists of a colloidal suspension of zipped-chain bundles with the chain axes aligned along the magnetic field direction. |
publishDate |
2015 |
dc.date.none.fl_str_mv |
2015-08 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/186220 Heinrich, D.; Goñi, A. R.; Osán, Tristán Martín; Cerioni, Lucas Matias Ceferino; Smessaert, A.; et al.; Effects of magnetic field gradients on the aggregation dynamics of colloidal magnetic nanoparticles; Royal Society of Chemistry; Soft Matter; 11; 38; 8-2015; 7606-7616 1744-683X CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/186220 |
identifier_str_mv |
Heinrich, D.; Goñi, A. R.; Osán, Tristán Martín; Cerioni, Lucas Matias Ceferino; Smessaert, A.; et al.; Effects of magnetic field gradients on the aggregation dynamics of colloidal magnetic nanoparticles; Royal Society of Chemistry; Soft Matter; 11; 38; 8-2015; 7606-7616 1744-683X CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/doi/10.1039/c5sm00541h |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
Royal Society of Chemistry |
publisher.none.fl_str_mv |
Royal Society of Chemistry |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1844614427637186560 |
score |
13.070432 |