Effect of Nanoclustering and Dipolar Interactions in Heat Generation for Magnetic Hyperthermia

Autores
Coral, Diego Fernando; Mendoza Zélis, Pedro; Marciello, Marzia; Morales, María Del Puerto; Craievich, Aldo; Sánchez, Francisco Homero; Fernández van Raap, Marcela Beatriz
Año de publicación
2016
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
Biomedical magnetic colloids commonly used in magnetic hyperthermia experiments often display a bidisperse structure, i.e., are composed of stable nanoclusters coexisting with well-dispersed nanoparticles. However, the influence of nanoclusters in the optimization of colloids for heat dissipation is usually excluded. In this work, bidisperse colloids are used to analyze the effect of nanoclustering and long-range magnetic dipolar interaction on the magnetic hyperthermia efficiency. Two kinds of colloids, composed of magnetite cores with mean sizes of around 10 and 18 nm, coated with oleic acid and dispersed in hexane, and coated with meso-2,3-dimercaptosuccinic acid and dispersed in water, were analyzed. Small-angle X-ray scattering was applied to thoroughly characterize nanoparticle structuring. We proved that the magnetic hyperthermia performances of nanoclusters and single nanoparticles are distinctive. Nanoclustering acts to reduce the specific heating efficiency whereas a peak against concentration appears for the well-dispersed component. Our experiments show that the heating efficiency of a magnetic colloid can increase or decrease when dipolar interactions increase and that the colloid concentration, i.e., dipolar interaction, can be used to improve magnetic hyperthermia. We have proven that the power dissipated by an ensemble of dispersed magnetic nanoparticles becomes a nonextensive property as a direct consequence of the long-range nature of dipolar interactions. This knowledge is a key point in selecting the correct dose that has to be injected to achieve the desired outcome in intracellular magnetic hyperthermia therapy.
Fil: Coral, Diego Fernando. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Física La Plata. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Instituto de Física La Plata; Argentina
Fil: Mendoza Zélis, Pedro. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Física La Plata. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Instituto de Física La Plata; Argentina
Fil: Marciello, Marzia. Instituto de Ciencia de Materiales de Madrid; España. Consejo Superior de Investigaciones Científicas; España
Fil: Morales, María Del Puerto. Instituto de Ciencia de Materiales de Madrid; España. Consejo Superior de Investigaciones Científicas; España
Fil: Craievich, Aldo. Universidade de Sao Paulo; Brasil
Fil: Sánchez, Francisco Homero. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Física La Plata. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Instituto de Física La Plata; Argentina
Fil: Fernández van Raap, Marcela Beatriz. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Física La Plata. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Instituto de Física La Plata; Argentina
Materia
Magnetic Colloids
Magnetic Hyperthermia
Saxs
Biomedical Aplications
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/54927

id CONICETDig_5c894d9667f1ced6f95f26f7604451d2
oai_identifier_str oai:ri.conicet.gov.ar:11336/54927
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling Effect of Nanoclustering and Dipolar Interactions in Heat Generation for Magnetic HyperthermiaCoral, Diego FernandoMendoza Zélis, PedroMarciello, MarziaMorales, María Del PuertoCraievich, AldoSánchez, Francisco HomeroFernández van Raap, Marcela BeatrizMagnetic ColloidsMagnetic HyperthermiaSaxsBiomedical Aplicationshttps://purl.org/becyt/ford/1.3https://purl.org/becyt/ford/1Biomedical magnetic colloids commonly used in magnetic hyperthermia experiments often display a bidisperse structure, i.e., are composed of stable nanoclusters coexisting with well-dispersed nanoparticles. However, the influence of nanoclusters in the optimization of colloids for heat dissipation is usually excluded. In this work, bidisperse colloids are used to analyze the effect of nanoclustering and long-range magnetic dipolar interaction on the magnetic hyperthermia efficiency. Two kinds of colloids, composed of magnetite cores with mean sizes of around 10 and 18 nm, coated with oleic acid and dispersed in hexane, and coated with meso-2,3-dimercaptosuccinic acid and dispersed in water, were analyzed. Small-angle X-ray scattering was applied to thoroughly characterize nanoparticle structuring. We proved that the magnetic hyperthermia performances of nanoclusters and single nanoparticles are distinctive. Nanoclustering acts to reduce the specific heating efficiency whereas a peak against concentration appears for the well-dispersed component. Our experiments show that the heating efficiency of a magnetic colloid can increase or decrease when dipolar interactions increase and that the colloid concentration, i.e., dipolar interaction, can be used to improve magnetic hyperthermia. We have proven that the power dissipated by an ensemble of dispersed magnetic nanoparticles becomes a nonextensive property as a direct consequence of the long-range nature of dipolar interactions. This knowledge is a key point in selecting the correct dose that has to be injected to achieve the desired outcome in intracellular magnetic hyperthermia therapy.Fil: Coral, Diego Fernando. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Física La Plata. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Instituto de Física La Plata; ArgentinaFil: Mendoza Zélis, Pedro. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Física La Plata. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Instituto de Física La Plata; ArgentinaFil: Marciello, Marzia. Instituto de Ciencia de Materiales de Madrid; España. Consejo Superior de Investigaciones Científicas; EspañaFil: Morales, María Del Puerto. Instituto de Ciencia de Materiales de Madrid; España. Consejo Superior de Investigaciones Científicas; EspañaFil: Craievich, Aldo. Universidade de Sao Paulo; BrasilFil: Sánchez, Francisco Homero. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Física La Plata. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Instituto de Física La Plata; ArgentinaFil: Fernández van Raap, Marcela Beatriz. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Física La Plata. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Instituto de Física La Plata; ArgentinaAmerican Chemical Society2016-02info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/54927Coral, Diego Fernando; Mendoza Zélis, Pedro; Marciello, Marzia; Morales, María Del Puerto; Craievich, Aldo; et al.; Effect of Nanoclustering and Dipolar Interactions in Heat Generation for Magnetic Hyperthermia; American Chemical Society; Langmuir; 32; 5; 2-2016; 1201-12130743-7463CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/doi/10.1021/acs.langmuir.5b03559info:eu-repo/semantics/altIdentifier/url/https://pubs.acs.org/doi/10.1021/acs.langmuir.5b03559info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-03T09:50:35Zoai:ri.conicet.gov.ar:11336/54927instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-03 09:50:35.788CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv Effect of Nanoclustering and Dipolar Interactions in Heat Generation for Magnetic Hyperthermia
title Effect of Nanoclustering and Dipolar Interactions in Heat Generation for Magnetic Hyperthermia
spellingShingle Effect of Nanoclustering and Dipolar Interactions in Heat Generation for Magnetic Hyperthermia
Coral, Diego Fernando
Magnetic Colloids
Magnetic Hyperthermia
Saxs
Biomedical Aplications
title_short Effect of Nanoclustering and Dipolar Interactions in Heat Generation for Magnetic Hyperthermia
title_full Effect of Nanoclustering and Dipolar Interactions in Heat Generation for Magnetic Hyperthermia
title_fullStr Effect of Nanoclustering and Dipolar Interactions in Heat Generation for Magnetic Hyperthermia
title_full_unstemmed Effect of Nanoclustering and Dipolar Interactions in Heat Generation for Magnetic Hyperthermia
title_sort Effect of Nanoclustering and Dipolar Interactions in Heat Generation for Magnetic Hyperthermia
dc.creator.none.fl_str_mv Coral, Diego Fernando
Mendoza Zélis, Pedro
Marciello, Marzia
Morales, María Del Puerto
Craievich, Aldo
Sánchez, Francisco Homero
Fernández van Raap, Marcela Beatriz
author Coral, Diego Fernando
author_facet Coral, Diego Fernando
Mendoza Zélis, Pedro
Marciello, Marzia
Morales, María Del Puerto
Craievich, Aldo
Sánchez, Francisco Homero
Fernández van Raap, Marcela Beatriz
author_role author
author2 Mendoza Zélis, Pedro
Marciello, Marzia
Morales, María Del Puerto
Craievich, Aldo
Sánchez, Francisco Homero
Fernández van Raap, Marcela Beatriz
author2_role author
author
author
author
author
author
dc.subject.none.fl_str_mv Magnetic Colloids
Magnetic Hyperthermia
Saxs
Biomedical Aplications
topic Magnetic Colloids
Magnetic Hyperthermia
Saxs
Biomedical Aplications
purl_subject.fl_str_mv https://purl.org/becyt/ford/1.3
https://purl.org/becyt/ford/1
dc.description.none.fl_txt_mv Biomedical magnetic colloids commonly used in magnetic hyperthermia experiments often display a bidisperse structure, i.e., are composed of stable nanoclusters coexisting with well-dispersed nanoparticles. However, the influence of nanoclusters in the optimization of colloids for heat dissipation is usually excluded. In this work, bidisperse colloids are used to analyze the effect of nanoclustering and long-range magnetic dipolar interaction on the magnetic hyperthermia efficiency. Two kinds of colloids, composed of magnetite cores with mean sizes of around 10 and 18 nm, coated with oleic acid and dispersed in hexane, and coated with meso-2,3-dimercaptosuccinic acid and dispersed in water, were analyzed. Small-angle X-ray scattering was applied to thoroughly characterize nanoparticle structuring. We proved that the magnetic hyperthermia performances of nanoclusters and single nanoparticles are distinctive. Nanoclustering acts to reduce the specific heating efficiency whereas a peak against concentration appears for the well-dispersed component. Our experiments show that the heating efficiency of a magnetic colloid can increase or decrease when dipolar interactions increase and that the colloid concentration, i.e., dipolar interaction, can be used to improve magnetic hyperthermia. We have proven that the power dissipated by an ensemble of dispersed magnetic nanoparticles becomes a nonextensive property as a direct consequence of the long-range nature of dipolar interactions. This knowledge is a key point in selecting the correct dose that has to be injected to achieve the desired outcome in intracellular magnetic hyperthermia therapy.
Fil: Coral, Diego Fernando. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Física La Plata. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Instituto de Física La Plata; Argentina
Fil: Mendoza Zélis, Pedro. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Física La Plata. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Instituto de Física La Plata; Argentina
Fil: Marciello, Marzia. Instituto de Ciencia de Materiales de Madrid; España. Consejo Superior de Investigaciones Científicas; España
Fil: Morales, María Del Puerto. Instituto de Ciencia de Materiales de Madrid; España. Consejo Superior de Investigaciones Científicas; España
Fil: Craievich, Aldo. Universidade de Sao Paulo; Brasil
Fil: Sánchez, Francisco Homero. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Física La Plata. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Instituto de Física La Plata; Argentina
Fil: Fernández van Raap, Marcela Beatriz. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Física La Plata. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Instituto de Física La Plata; Argentina
description Biomedical magnetic colloids commonly used in magnetic hyperthermia experiments often display a bidisperse structure, i.e., are composed of stable nanoclusters coexisting with well-dispersed nanoparticles. However, the influence of nanoclusters in the optimization of colloids for heat dissipation is usually excluded. In this work, bidisperse colloids are used to analyze the effect of nanoclustering and long-range magnetic dipolar interaction on the magnetic hyperthermia efficiency. Two kinds of colloids, composed of magnetite cores with mean sizes of around 10 and 18 nm, coated with oleic acid and dispersed in hexane, and coated with meso-2,3-dimercaptosuccinic acid and dispersed in water, were analyzed. Small-angle X-ray scattering was applied to thoroughly characterize nanoparticle structuring. We proved that the magnetic hyperthermia performances of nanoclusters and single nanoparticles are distinctive. Nanoclustering acts to reduce the specific heating efficiency whereas a peak against concentration appears for the well-dispersed component. Our experiments show that the heating efficiency of a magnetic colloid can increase or decrease when dipolar interactions increase and that the colloid concentration, i.e., dipolar interaction, can be used to improve magnetic hyperthermia. We have proven that the power dissipated by an ensemble of dispersed magnetic nanoparticles becomes a nonextensive property as a direct consequence of the long-range nature of dipolar interactions. This knowledge is a key point in selecting the correct dose that has to be injected to achieve the desired outcome in intracellular magnetic hyperthermia therapy.
publishDate 2016
dc.date.none.fl_str_mv 2016-02
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/54927
Coral, Diego Fernando; Mendoza Zélis, Pedro; Marciello, Marzia; Morales, María Del Puerto; Craievich, Aldo; et al.; Effect of Nanoclustering and Dipolar Interactions in Heat Generation for Magnetic Hyperthermia; American Chemical Society; Langmuir; 32; 5; 2-2016; 1201-1213
0743-7463
CONICET Digital
CONICET
url http://hdl.handle.net/11336/54927
identifier_str_mv Coral, Diego Fernando; Mendoza Zélis, Pedro; Marciello, Marzia; Morales, María Del Puerto; Craievich, Aldo; et al.; Effect of Nanoclustering and Dipolar Interactions in Heat Generation for Magnetic Hyperthermia; American Chemical Society; Langmuir; 32; 5; 2-2016; 1201-1213
0743-7463
CONICET Digital
CONICET
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/doi/10.1021/acs.langmuir.5b03559
info:eu-repo/semantics/altIdentifier/url/https://pubs.acs.org/doi/10.1021/acs.langmuir.5b03559
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
application/pdf
application/pdf
application/pdf
dc.publisher.none.fl_str_mv American Chemical Society
publisher.none.fl_str_mv American Chemical Society
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1842269040422158336
score 13.13397