A version of Putinar's Positivstellensatz for cylinders
- Autores
- Escorcielo, Paula Micaela; Perrucci, Daniel Roberto
- Año de publicación
- 2020
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- We prove that, under some additional assumption, Putinar's Positivstellensatz holds on cylinders of type S×R with S={x¯∈Rn|g1(x¯)≥0,…,gs(x¯)≥0} such that the quadratic module generated by g1,…,gs in R[X1,…,Xn] is archimedean, and we provide a degree bound for the representation of a polynomial f∈R[X1,…,Xn,Y] which is positive on S×R as an explicit element of the quadratic module generated by g1,…,gs in R[X1,…,Xn,Y]. We also include an example to show that an additional assumption is necessary for Putinar's Positivstellensatz to hold on cylinders of this type.
Fil: Escorcielo, Paula Micaela. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas "Luis A. Santaló". Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Investigaciones Matemáticas "Luis A. Santaló"; Argentina
Fil: Perrucci, Daniel Roberto. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas "Luis A. Santaló". Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Investigaciones Matemáticas "Luis A. Santaló"; Argentina - Materia
-
DEGREE BOUNDS
PUTINAR'S POSITIVSTELLENSATZ
SUMS OF SQUARES - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
.jpg)
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/136896
Ver los metadatos del registro completo
| id |
CONICETDig_8e7ec271f8c32d863445623f6a2b12e8 |
|---|---|
| oai_identifier_str |
oai:ri.conicet.gov.ar:11336/136896 |
| network_acronym_str |
CONICETDig |
| repository_id_str |
3498 |
| network_name_str |
CONICET Digital (CONICET) |
| spelling |
A version of Putinar's Positivstellensatz for cylindersEscorcielo, Paula MicaelaPerrucci, Daniel RobertoDEGREE BOUNDSPUTINAR'S POSITIVSTELLENSATZSUMS OF SQUAREShttps://purl.org/becyt/ford/1.1https://purl.org/becyt/ford/1We prove that, under some additional assumption, Putinar's Positivstellensatz holds on cylinders of type S×R with S={x¯∈Rn|g1(x¯)≥0,…,gs(x¯)≥0} such that the quadratic module generated by g1,…,gs in R[X1,…,Xn] is archimedean, and we provide a degree bound for the representation of a polynomial f∈R[X1,…,Xn,Y] which is positive on S×R as an explicit element of the quadratic module generated by g1,…,gs in R[X1,…,Xn,Y]. We also include an example to show that an additional assumption is necessary for Putinar's Positivstellensatz to hold on cylinders of this type.Fil: Escorcielo, Paula Micaela. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas "Luis A. Santaló". Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Investigaciones Matemáticas "Luis A. Santaló"; ArgentinaFil: Perrucci, Daniel Roberto. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas "Luis A. Santaló". Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Investigaciones Matemáticas "Luis A. Santaló"; ArgentinaElsevier Science2020-05info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/136896Escorcielo, Paula Micaela; Perrucci, Daniel Roberto; A version of Putinar's Positivstellensatz for cylinders; Elsevier Science; Journal Of Pure And Applied Algebra; 224; 12; 5-2020; 1-170022-4049CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/doi/10.1016/j.jpaa.2020.106448info:eu-repo/semantics/altIdentifier/url/https://www.sciencedirect.com/science/article/abs/pii/S0022404920301481?via%3Dihubinfo:eu-repo/semantics/altIdentifier/arxiv/https://arxiv.org/abs/1811.03586info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-10-29T12:26:13Zoai:ri.conicet.gov.ar:11336/136896instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-10-29 12:26:14.165CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
| dc.title.none.fl_str_mv |
A version of Putinar's Positivstellensatz for cylinders |
| title |
A version of Putinar's Positivstellensatz for cylinders |
| spellingShingle |
A version of Putinar's Positivstellensatz for cylinders Escorcielo, Paula Micaela DEGREE BOUNDS PUTINAR'S POSITIVSTELLENSATZ SUMS OF SQUARES |
| title_short |
A version of Putinar's Positivstellensatz for cylinders |
| title_full |
A version of Putinar's Positivstellensatz for cylinders |
| title_fullStr |
A version of Putinar's Positivstellensatz for cylinders |
| title_full_unstemmed |
A version of Putinar's Positivstellensatz for cylinders |
| title_sort |
A version of Putinar's Positivstellensatz for cylinders |
| dc.creator.none.fl_str_mv |
Escorcielo, Paula Micaela Perrucci, Daniel Roberto |
| author |
Escorcielo, Paula Micaela |
| author_facet |
Escorcielo, Paula Micaela Perrucci, Daniel Roberto |
| author_role |
author |
| author2 |
Perrucci, Daniel Roberto |
| author2_role |
author |
| dc.subject.none.fl_str_mv |
DEGREE BOUNDS PUTINAR'S POSITIVSTELLENSATZ SUMS OF SQUARES |
| topic |
DEGREE BOUNDS PUTINAR'S POSITIVSTELLENSATZ SUMS OF SQUARES |
| purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.1 https://purl.org/becyt/ford/1 |
| dc.description.none.fl_txt_mv |
We prove that, under some additional assumption, Putinar's Positivstellensatz holds on cylinders of type S×R with S={x¯∈Rn|g1(x¯)≥0,…,gs(x¯)≥0} such that the quadratic module generated by g1,…,gs in R[X1,…,Xn] is archimedean, and we provide a degree bound for the representation of a polynomial f∈R[X1,…,Xn,Y] which is positive on S×R as an explicit element of the quadratic module generated by g1,…,gs in R[X1,…,Xn,Y]. We also include an example to show that an additional assumption is necessary for Putinar's Positivstellensatz to hold on cylinders of this type. Fil: Escorcielo, Paula Micaela. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas "Luis A. Santaló". Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Investigaciones Matemáticas "Luis A. Santaló"; Argentina Fil: Perrucci, Daniel Roberto. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas "Luis A. Santaló". Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Investigaciones Matemáticas "Luis A. Santaló"; Argentina |
| description |
We prove that, under some additional assumption, Putinar's Positivstellensatz holds on cylinders of type S×R with S={x¯∈Rn|g1(x¯)≥0,…,gs(x¯)≥0} such that the quadratic module generated by g1,…,gs in R[X1,…,Xn] is archimedean, and we provide a degree bound for the representation of a polynomial f∈R[X1,…,Xn,Y] which is positive on S×R as an explicit element of the quadratic module generated by g1,…,gs in R[X1,…,Xn,Y]. We also include an example to show that an additional assumption is necessary for Putinar's Positivstellensatz to hold on cylinders of this type. |
| publishDate |
2020 |
| dc.date.none.fl_str_mv |
2020-05 |
| dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
| format |
article |
| status_str |
publishedVersion |
| dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/136896 Escorcielo, Paula Micaela; Perrucci, Daniel Roberto; A version of Putinar's Positivstellensatz for cylinders; Elsevier Science; Journal Of Pure And Applied Algebra; 224; 12; 5-2020; 1-17 0022-4049 CONICET Digital CONICET |
| url |
http://hdl.handle.net/11336/136896 |
| identifier_str_mv |
Escorcielo, Paula Micaela; Perrucci, Daniel Roberto; A version of Putinar's Positivstellensatz for cylinders; Elsevier Science; Journal Of Pure And Applied Algebra; 224; 12; 5-2020; 1-17 0022-4049 CONICET Digital CONICET |
| dc.language.none.fl_str_mv |
eng |
| language |
eng |
| dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/doi/10.1016/j.jpaa.2020.106448 info:eu-repo/semantics/altIdentifier/url/https://www.sciencedirect.com/science/article/abs/pii/S0022404920301481?via%3Dihub info:eu-repo/semantics/altIdentifier/arxiv/https://arxiv.org/abs/1811.03586 |
| dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
| eu_rights_str_mv |
openAccess |
| rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
| dc.format.none.fl_str_mv |
application/pdf application/pdf application/pdf |
| dc.publisher.none.fl_str_mv |
Elsevier Science |
| publisher.none.fl_str_mv |
Elsevier Science |
| dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
| reponame_str |
CONICET Digital (CONICET) |
| collection |
CONICET Digital (CONICET) |
| instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
| repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
| repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
| _version_ |
1847427178270031872 |
| score |
12.589754 |