Let the music be your master: Power laws and music listening habits

Autores
Mongiardino Koch, Nicolás; Soto, Ignacio Maria
Año de publicación
2016
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
Music preferences have long been studied owing to their importance in the fields of psychology and sociology. However, previous efforts seldom focused on people’s deliberate choices of music in everyday life. In this study, we aimed to analyze music listening behaviors using personal records of music listening activity. We obtained the history of songs listened to by 50 different users of the online database system Last.fm, spanning on average five years of activity. With the use of this data set, we are able to confirm that the number of songs reproduced per artist follows a truncated power-law distribution. The scaling parameter of the distribution varies considerably among users, providing a metric that characterizes the way in which different people explore music. We propose that this pattern is consistent with a preferential attachment model, according to which the probability of listening to a given artist at a given time is proportional to the frequency to which the artist was listened to in the past. These results provide new insight regarding the way in which individual music preferences are built.
Fil: Mongiardino Koch, Nicolás. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Ecología, Genética y Evolución de Buenos Aires. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Ecología, Genética y Evolución de Buenos Aires; Argentina
Fil: Soto, Ignacio Maria. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Ecología, Genética y Evolución de Buenos Aires. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Ecología, Genética y Evolución de Buenos Aires; Argentina
Materia
Listening Behaviors
Music
Music Preferences
Power Law
Preferential Attachment
Taste
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/60289

id CONICETDig_8dda83e474604f7a20ad9066bfd14520
oai_identifier_str oai:ri.conicet.gov.ar:11336/60289
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling Let the music be your master: Power laws and music listening habitsMongiardino Koch, NicolásSoto, Ignacio MariaListening BehaviorsMusicMusic PreferencesPower LawPreferential AttachmentTastehttps://purl.org/becyt/ford/1.6https://purl.org/becyt/ford/1https://purl.org/becyt/ford/1.1https://purl.org/becyt/ford/1https://purl.org/becyt/ford/6.4https://purl.org/becyt/ford/6Music preferences have long been studied owing to their importance in the fields of psychology and sociology. However, previous efforts seldom focused on people’s deliberate choices of music in everyday life. In this study, we aimed to analyze music listening behaviors using personal records of music listening activity. We obtained the history of songs listened to by 50 different users of the online database system Last.fm, spanning on average five years of activity. With the use of this data set, we are able to confirm that the number of songs reproduced per artist follows a truncated power-law distribution. The scaling parameter of the distribution varies considerably among users, providing a metric that characterizes the way in which different people explore music. We propose that this pattern is consistent with a preferential attachment model, according to which the probability of listening to a given artist at a given time is proportional to the frequency to which the artist was listened to in the past. These results provide new insight regarding the way in which individual music preferences are built.Fil: Mongiardino Koch, Nicolás. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Ecología, Genética y Evolución de Buenos Aires. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Ecología, Genética y Evolución de Buenos Aires; ArgentinaFil: Soto, Ignacio Maria. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Ecología, Genética y Evolución de Buenos Aires. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Ecología, Genética y Evolución de Buenos Aires; ArgentinaSAGE Publications2016-01info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/60289Mongiardino Koch, Nicolás; Soto, Ignacio Maria; Let the music be your master: Power laws and music listening habits; SAGE Publications; Musicae Scientiae; 20; 2; 1-2016; 193-2061029-8649CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/doi/10.1177/1029864915619000info:eu-repo/semantics/altIdentifier/url/http://journals.sagepub.com/doi/10.1177/1029864915619000info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-10-15T14:24:34Zoai:ri.conicet.gov.ar:11336/60289instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-10-15 14:24:34.867CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv Let the music be your master: Power laws and music listening habits
title Let the music be your master: Power laws and music listening habits
spellingShingle Let the music be your master: Power laws and music listening habits
Mongiardino Koch, Nicolás
Listening Behaviors
Music
Music Preferences
Power Law
Preferential Attachment
Taste
title_short Let the music be your master: Power laws and music listening habits
title_full Let the music be your master: Power laws and music listening habits
title_fullStr Let the music be your master: Power laws and music listening habits
title_full_unstemmed Let the music be your master: Power laws and music listening habits
title_sort Let the music be your master: Power laws and music listening habits
dc.creator.none.fl_str_mv Mongiardino Koch, Nicolás
Soto, Ignacio Maria
author Mongiardino Koch, Nicolás
author_facet Mongiardino Koch, Nicolás
Soto, Ignacio Maria
author_role author
author2 Soto, Ignacio Maria
author2_role author
dc.subject.none.fl_str_mv Listening Behaviors
Music
Music Preferences
Power Law
Preferential Attachment
Taste
topic Listening Behaviors
Music
Music Preferences
Power Law
Preferential Attachment
Taste
purl_subject.fl_str_mv https://purl.org/becyt/ford/1.6
https://purl.org/becyt/ford/1
https://purl.org/becyt/ford/1.1
https://purl.org/becyt/ford/1
https://purl.org/becyt/ford/6.4
https://purl.org/becyt/ford/6
dc.description.none.fl_txt_mv Music preferences have long been studied owing to their importance in the fields of psychology and sociology. However, previous efforts seldom focused on people’s deliberate choices of music in everyday life. In this study, we aimed to analyze music listening behaviors using personal records of music listening activity. We obtained the history of songs listened to by 50 different users of the online database system Last.fm, spanning on average five years of activity. With the use of this data set, we are able to confirm that the number of songs reproduced per artist follows a truncated power-law distribution. The scaling parameter of the distribution varies considerably among users, providing a metric that characterizes the way in which different people explore music. We propose that this pattern is consistent with a preferential attachment model, according to which the probability of listening to a given artist at a given time is proportional to the frequency to which the artist was listened to in the past. These results provide new insight regarding the way in which individual music preferences are built.
Fil: Mongiardino Koch, Nicolás. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Ecología, Genética y Evolución de Buenos Aires. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Ecología, Genética y Evolución de Buenos Aires; Argentina
Fil: Soto, Ignacio Maria. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Ecología, Genética y Evolución de Buenos Aires. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Ecología, Genética y Evolución de Buenos Aires; Argentina
description Music preferences have long been studied owing to their importance in the fields of psychology and sociology. However, previous efforts seldom focused on people’s deliberate choices of music in everyday life. In this study, we aimed to analyze music listening behaviors using personal records of music listening activity. We obtained the history of songs listened to by 50 different users of the online database system Last.fm, spanning on average five years of activity. With the use of this data set, we are able to confirm that the number of songs reproduced per artist follows a truncated power-law distribution. The scaling parameter of the distribution varies considerably among users, providing a metric that characterizes the way in which different people explore music. We propose that this pattern is consistent with a preferential attachment model, according to which the probability of listening to a given artist at a given time is proportional to the frequency to which the artist was listened to in the past. These results provide new insight regarding the way in which individual music preferences are built.
publishDate 2016
dc.date.none.fl_str_mv 2016-01
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/60289
Mongiardino Koch, Nicolás; Soto, Ignacio Maria; Let the music be your master: Power laws and music listening habits; SAGE Publications; Musicae Scientiae; 20; 2; 1-2016; 193-206
1029-8649
CONICET Digital
CONICET
url http://hdl.handle.net/11336/60289
identifier_str_mv Mongiardino Koch, Nicolás; Soto, Ignacio Maria; Let the music be your master: Power laws and music listening habits; SAGE Publications; Musicae Scientiae; 20; 2; 1-2016; 193-206
1029-8649
CONICET Digital
CONICET
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/doi/10.1177/1029864915619000
info:eu-repo/semantics/altIdentifier/url/http://journals.sagepub.com/doi/10.1177/1029864915619000
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
application/pdf
dc.publisher.none.fl_str_mv SAGE Publications
publisher.none.fl_str_mv SAGE Publications
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1846082669202374656
score 13.22299