Characterization of tropical hemispaces by (P,R)-decompositions
- Autores
- Katz, Ricardo David; Nitica, Viorel; Sergeev, Sergei
- Año de publicación
- 2014
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- We consider tropical hemispaces, defined as tropically convex sets whose complements are also tropically convex, and tropical semispaces, defined as maximal tropically convex sets not containing a given point. We introduce the concept of (P,R)-decomposition. This yields (to our knowledge) a new kind of representation of tropically convex sets extending the classical idea of representing convex sets by means of extreme points and rays. We characterize tropical hemispaces as tropically convex sets that admit a (P,R)-decomposition of certain kind. In this characterization, with each tropical hemispace we associate a matrix with coefficients in the completed tropical semifield, satisfying an extended rank-one condition. Our proof techniques are based on homogenization (lifting a convex set to a cone), and the relation between tropical hemispaces and semispaces.
Fil: Katz, Ricardo David. Universidad Nacional de Rosario. Facultad de Ciencias Exactas, Ingeniería y Agrimensura. Instituto de Matemática "Beppo Levi"; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Rosario. Centro de Estudios Fotosintéticos y Bioquímicos (i); Argentina
Fil: Nitica, Viorel. West Chester University; Rumania
Fil: Sergeev, Sergei. University of Birmingham. School of Mathematics; Reino Unido - Materia
-
TROPICAL CONVEXITY
ABSTRACT CONVEXITY
MAX-PLUS ALGEBRA
HEMISPACE
SEMISPACE
RANK-ONE MATRIX - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-nd/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/4813
Ver los metadatos del registro completo
id |
CONICETDig_8dcf6a28dc00920d897a47171aa3fbed |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/4813 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Characterization of tropical hemispaces by (P,R)-decompositionsKatz, Ricardo DavidNitica, ViorelSergeev, SergeiTROPICAL CONVEXITYABSTRACT CONVEXITYMAX-PLUS ALGEBRAHEMISPACESEMISPACERANK-ONE MATRIXhttps://purl.org/becyt/ford/1.1https://purl.org/becyt/ford/1We consider tropical hemispaces, defined as tropically convex sets whose complements are also tropically convex, and tropical semispaces, defined as maximal tropically convex sets not containing a given point. We introduce the concept of (P,R)-decomposition. This yields (to our knowledge) a new kind of representation of tropically convex sets extending the classical idea of representing convex sets by means of extreme points and rays. We characterize tropical hemispaces as tropically convex sets that admit a (P,R)-decomposition of certain kind. In this characterization, with each tropical hemispace we associate a matrix with coefficients in the completed tropical semifield, satisfying an extended rank-one condition. Our proof techniques are based on homogenization (lifting a convex set to a cone), and the relation between tropical hemispaces and semispaces.Fil: Katz, Ricardo David. Universidad Nacional de Rosario. Facultad de Ciencias Exactas, Ingeniería y Agrimensura. Instituto de Matemática "Beppo Levi"; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Rosario. Centro de Estudios Fotosintéticos y Bioquímicos (i); ArgentinaFil: Nitica, Viorel. West Chester University; RumaniaFil: Sergeev, Sergei. University of Birmingham. School of Mathematics; Reino UnidoElsevier2014-01info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/4813Katz, Ricardo David; Nitica, Viorel; Sergeev, Sergei; Characterization of tropical hemispaces by (P,R)-decompositions; Elsevier; Linear Algebra and its Applications; 440; 1; 1-2014; 131-1630024-3795enginfo:eu-repo/semantics/altIdentifier/url/http://www.sciencedirect.com/science/article/pii/S0024379513006630info:eu-repo/semantics/altIdentifier/doi/10.1016/j.laa.2013.10.029info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-nd/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T09:53:51Zoai:ri.conicet.gov.ar:11336/4813instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 09:53:51.682CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Characterization of tropical hemispaces by (P,R)-decompositions |
title |
Characterization of tropical hemispaces by (P,R)-decompositions |
spellingShingle |
Characterization of tropical hemispaces by (P,R)-decompositions Katz, Ricardo David TROPICAL CONVEXITY ABSTRACT CONVEXITY MAX-PLUS ALGEBRA HEMISPACE SEMISPACE RANK-ONE MATRIX |
title_short |
Characterization of tropical hemispaces by (P,R)-decompositions |
title_full |
Characterization of tropical hemispaces by (P,R)-decompositions |
title_fullStr |
Characterization of tropical hemispaces by (P,R)-decompositions |
title_full_unstemmed |
Characterization of tropical hemispaces by (P,R)-decompositions |
title_sort |
Characterization of tropical hemispaces by (P,R)-decompositions |
dc.creator.none.fl_str_mv |
Katz, Ricardo David Nitica, Viorel Sergeev, Sergei |
author |
Katz, Ricardo David |
author_facet |
Katz, Ricardo David Nitica, Viorel Sergeev, Sergei |
author_role |
author |
author2 |
Nitica, Viorel Sergeev, Sergei |
author2_role |
author author |
dc.subject.none.fl_str_mv |
TROPICAL CONVEXITY ABSTRACT CONVEXITY MAX-PLUS ALGEBRA HEMISPACE SEMISPACE RANK-ONE MATRIX |
topic |
TROPICAL CONVEXITY ABSTRACT CONVEXITY MAX-PLUS ALGEBRA HEMISPACE SEMISPACE RANK-ONE MATRIX |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.1 https://purl.org/becyt/ford/1 |
dc.description.none.fl_txt_mv |
We consider tropical hemispaces, defined as tropically convex sets whose complements are also tropically convex, and tropical semispaces, defined as maximal tropically convex sets not containing a given point. We introduce the concept of (P,R)-decomposition. This yields (to our knowledge) a new kind of representation of tropically convex sets extending the classical idea of representing convex sets by means of extreme points and rays. We characterize tropical hemispaces as tropically convex sets that admit a (P,R)-decomposition of certain kind. In this characterization, with each tropical hemispace we associate a matrix with coefficients in the completed tropical semifield, satisfying an extended rank-one condition. Our proof techniques are based on homogenization (lifting a convex set to a cone), and the relation between tropical hemispaces and semispaces. Fil: Katz, Ricardo David. Universidad Nacional de Rosario. Facultad de Ciencias Exactas, Ingeniería y Agrimensura. Instituto de Matemática "Beppo Levi"; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Rosario. Centro de Estudios Fotosintéticos y Bioquímicos (i); Argentina Fil: Nitica, Viorel. West Chester University; Rumania Fil: Sergeev, Sergei. University of Birmingham. School of Mathematics; Reino Unido |
description |
We consider tropical hemispaces, defined as tropically convex sets whose complements are also tropically convex, and tropical semispaces, defined as maximal tropically convex sets not containing a given point. We introduce the concept of (P,R)-decomposition. This yields (to our knowledge) a new kind of representation of tropically convex sets extending the classical idea of representing convex sets by means of extreme points and rays. We characterize tropical hemispaces as tropically convex sets that admit a (P,R)-decomposition of certain kind. In this characterization, with each tropical hemispace we associate a matrix with coefficients in the completed tropical semifield, satisfying an extended rank-one condition. Our proof techniques are based on homogenization (lifting a convex set to a cone), and the relation between tropical hemispaces and semispaces. |
publishDate |
2014 |
dc.date.none.fl_str_mv |
2014-01 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/4813 Katz, Ricardo David; Nitica, Viorel; Sergeev, Sergei; Characterization of tropical hemispaces by (P,R)-decompositions; Elsevier; Linear Algebra and its Applications; 440; 1; 1-2014; 131-163 0024-3795 |
url |
http://hdl.handle.net/11336/4813 |
identifier_str_mv |
Katz, Ricardo David; Nitica, Viorel; Sergeev, Sergei; Characterization of tropical hemispaces by (P,R)-decompositions; Elsevier; Linear Algebra and its Applications; 440; 1; 1-2014; 131-163 0024-3795 |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/url/http://www.sciencedirect.com/science/article/pii/S0024379513006630 info:eu-repo/semantics/altIdentifier/doi/10.1016/j.laa.2013.10.029 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-nd/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-nd/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
Elsevier |
publisher.none.fl_str_mv |
Elsevier |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1844613640800436224 |
score |
13.070432 |