Ice surface near melting point: Effects on the tropospheric ice
- Autores
- Aguirre Varela, Guillermo Gabriel; Di Prinzio, Carlos Leonardo; Stoler Flores, Damian
- Año de publicación
- 2021
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- Atmospheric gases and chemical impurities can be stored and chemically transformed in the tropospheric ice. Impurities are rejected during freezing of the ice to the grain boundaries, free ice surfaces or inclusions. Surface snow and tropospheric ice, however, may be exposed to high temperatures and, eventually, the gases and chemical impurities can be released into the environment. It is important to study the surface structure and transport mechanisms at temperatures near the melting point because the location of impurities and their interactions with water molecules in the ice are not yet sufficiently explained. In this work, the evolution of a scratch on the bicrystalline ice surface was studied at –5℃. The surface transport mechanisms near the melting point were studied and, as a consequence, the surface structure could be determined. An ice sample was kept immersed in ultra-pure silicone oil to prevent evaporation and, thus, isolate the effect of surface diffusion. The ice sample was made with water with chemical conditions similar to the water of polar ice sheets. Photographs of the scratch were taken periodically, for approximately 50 hours, using a photographic camera coupled to an optical microscope. From these images, the evolution of the width of the scratch was studied and the surface diffusion was the dominant transport mechanism in the experiment. Finally, the ice surface self-diffusion coefficient at –5℃ was determined and it was very similar to the super-cooled water diffusion coefficient. A liquid-like behavior of ice surfaces near the melting point was found and it could have a strong influence on the reaction rates with atmospheric gases.
Fil: Aguirre Varela, Guillermo Gabriel. Universidad Nacional de Córdoba. Facultad de Matemática, Astronomia y Física. Sección Física. Grupo de Física de la Atmosfera; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Instituto de Física Enrique Gaviola. Universidad Nacional de Córdoba. Instituto de Física Enrique Gaviola; Argentina
Fil: Di Prinzio, Carlos Leonardo. Universidad Nacional de Córdoba. Facultad de Matemática, Astronomia y Física. Sección Física. Grupo de Física de la Atmosfera; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Instituto de Física Enrique Gaviola. Universidad Nacional de Córdoba. Instituto de Física Enrique Gaviola; Argentina
Fil: Stoler Flores, Damian. Universidad Nacional de Córdoba. Facultad de Matemática, Astronomia y Física. Sección Física. Grupo de Física de la Atmosfera; Argentina - Materia
-
AIR-ICE INTERACTION
ICE SELF-DIFFUSION COEFFICIENT
QUASI-LIQUID LAYER
SURFACE TRANSPORT MECHANISMS - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
.jpg)
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/184489
Ver los metadatos del registro completo
| id |
CONICETDig_8d40be243d96be3905cb28b9995cad15 |
|---|---|
| oai_identifier_str |
oai:ri.conicet.gov.ar:11336/184489 |
| network_acronym_str |
CONICETDig |
| repository_id_str |
3498 |
| network_name_str |
CONICET Digital (CONICET) |
| spelling |
Ice surface near melting point: Effects on the tropospheric iceAguirre Varela, Guillermo GabrielDi Prinzio, Carlos LeonardoStoler Flores, DamianAIR-ICE INTERACTIONICE SELF-DIFFUSION COEFFICIENTQUASI-LIQUID LAYERSURFACE TRANSPORT MECHANISMShttps://purl.org/becyt/ford/1.3https://purl.org/becyt/ford/1Atmospheric gases and chemical impurities can be stored and chemically transformed in the tropospheric ice. Impurities are rejected during freezing of the ice to the grain boundaries, free ice surfaces or inclusions. Surface snow and tropospheric ice, however, may be exposed to high temperatures and, eventually, the gases and chemical impurities can be released into the environment. It is important to study the surface structure and transport mechanisms at temperatures near the melting point because the location of impurities and their interactions with water molecules in the ice are not yet sufficiently explained. In this work, the evolution of a scratch on the bicrystalline ice surface was studied at –5℃. The surface transport mechanisms near the melting point were studied and, as a consequence, the surface structure could be determined. An ice sample was kept immersed in ultra-pure silicone oil to prevent evaporation and, thus, isolate the effect of surface diffusion. The ice sample was made with water with chemical conditions similar to the water of polar ice sheets. Photographs of the scratch were taken periodically, for approximately 50 hours, using a photographic camera coupled to an optical microscope. From these images, the evolution of the width of the scratch was studied and the surface diffusion was the dominant transport mechanism in the experiment. Finally, the ice surface self-diffusion coefficient at –5℃ was determined and it was very similar to the super-cooled water diffusion coefficient. A liquid-like behavior of ice surfaces near the melting point was found and it could have a strong influence on the reaction rates with atmospheric gases.Fil: Aguirre Varela, Guillermo Gabriel. Universidad Nacional de Córdoba. Facultad de Matemática, Astronomia y Física. Sección Física. Grupo de Física de la Atmosfera; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Instituto de Física Enrique Gaviola. Universidad Nacional de Córdoba. Instituto de Física Enrique Gaviola; ArgentinaFil: Di Prinzio, Carlos Leonardo. Universidad Nacional de Córdoba. Facultad de Matemática, Astronomia y Física. Sección Física. Grupo de Física de la Atmosfera; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Instituto de Física Enrique Gaviola. Universidad Nacional de Córdoba. Instituto de Física Enrique Gaviola; ArgentinaFil: Stoler Flores, Damian. Universidad Nacional de Córdoba. Facultad de Matemática, Astronomia y Física. Sección Física. Grupo de Física de la Atmosfera; ArgentinaPolish Academy of Sciences. Committee on Polar Research2021-10info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/184489Aguirre Varela, Guillermo Gabriel; Di Prinzio, Carlos Leonardo; Stoler Flores, Damian; Ice surface near melting point: Effects on the tropospheric ice; Polish Academy of Sciences. Committee on Polar Research; Polish Polar Research; 42; 4; 10-2021; 237-2480138-03382081-8262CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/https://journals.pan.pl/dlibra/publication/137144/edition/120127/contentinfo:eu-repo/semantics/altIdentifier/doi/10.24425/ppr.2021.137144info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-10-15T15:38:17Zoai:ri.conicet.gov.ar:11336/184489instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-10-15 15:38:17.43CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
| dc.title.none.fl_str_mv |
Ice surface near melting point: Effects on the tropospheric ice |
| title |
Ice surface near melting point: Effects on the tropospheric ice |
| spellingShingle |
Ice surface near melting point: Effects on the tropospheric ice Aguirre Varela, Guillermo Gabriel AIR-ICE INTERACTION ICE SELF-DIFFUSION COEFFICIENT QUASI-LIQUID LAYER SURFACE TRANSPORT MECHANISMS |
| title_short |
Ice surface near melting point: Effects on the tropospheric ice |
| title_full |
Ice surface near melting point: Effects on the tropospheric ice |
| title_fullStr |
Ice surface near melting point: Effects on the tropospheric ice |
| title_full_unstemmed |
Ice surface near melting point: Effects on the tropospheric ice |
| title_sort |
Ice surface near melting point: Effects on the tropospheric ice |
| dc.creator.none.fl_str_mv |
Aguirre Varela, Guillermo Gabriel Di Prinzio, Carlos Leonardo Stoler Flores, Damian |
| author |
Aguirre Varela, Guillermo Gabriel |
| author_facet |
Aguirre Varela, Guillermo Gabriel Di Prinzio, Carlos Leonardo Stoler Flores, Damian |
| author_role |
author |
| author2 |
Di Prinzio, Carlos Leonardo Stoler Flores, Damian |
| author2_role |
author author |
| dc.subject.none.fl_str_mv |
AIR-ICE INTERACTION ICE SELF-DIFFUSION COEFFICIENT QUASI-LIQUID LAYER SURFACE TRANSPORT MECHANISMS |
| topic |
AIR-ICE INTERACTION ICE SELF-DIFFUSION COEFFICIENT QUASI-LIQUID LAYER SURFACE TRANSPORT MECHANISMS |
| purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.3 https://purl.org/becyt/ford/1 |
| dc.description.none.fl_txt_mv |
Atmospheric gases and chemical impurities can be stored and chemically transformed in the tropospheric ice. Impurities are rejected during freezing of the ice to the grain boundaries, free ice surfaces or inclusions. Surface snow and tropospheric ice, however, may be exposed to high temperatures and, eventually, the gases and chemical impurities can be released into the environment. It is important to study the surface structure and transport mechanisms at temperatures near the melting point because the location of impurities and their interactions with water molecules in the ice are not yet sufficiently explained. In this work, the evolution of a scratch on the bicrystalline ice surface was studied at –5℃. The surface transport mechanisms near the melting point were studied and, as a consequence, the surface structure could be determined. An ice sample was kept immersed in ultra-pure silicone oil to prevent evaporation and, thus, isolate the effect of surface diffusion. The ice sample was made with water with chemical conditions similar to the water of polar ice sheets. Photographs of the scratch were taken periodically, for approximately 50 hours, using a photographic camera coupled to an optical microscope. From these images, the evolution of the width of the scratch was studied and the surface diffusion was the dominant transport mechanism in the experiment. Finally, the ice surface self-diffusion coefficient at –5℃ was determined and it was very similar to the super-cooled water diffusion coefficient. A liquid-like behavior of ice surfaces near the melting point was found and it could have a strong influence on the reaction rates with atmospheric gases. Fil: Aguirre Varela, Guillermo Gabriel. Universidad Nacional de Córdoba. Facultad de Matemática, Astronomia y Física. Sección Física. Grupo de Física de la Atmosfera; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Instituto de Física Enrique Gaviola. Universidad Nacional de Córdoba. Instituto de Física Enrique Gaviola; Argentina Fil: Di Prinzio, Carlos Leonardo. Universidad Nacional de Córdoba. Facultad de Matemática, Astronomia y Física. Sección Física. Grupo de Física de la Atmosfera; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Instituto de Física Enrique Gaviola. Universidad Nacional de Córdoba. Instituto de Física Enrique Gaviola; Argentina Fil: Stoler Flores, Damian. Universidad Nacional de Córdoba. Facultad de Matemática, Astronomia y Física. Sección Física. Grupo de Física de la Atmosfera; Argentina |
| description |
Atmospheric gases and chemical impurities can be stored and chemically transformed in the tropospheric ice. Impurities are rejected during freezing of the ice to the grain boundaries, free ice surfaces or inclusions. Surface snow and tropospheric ice, however, may be exposed to high temperatures and, eventually, the gases and chemical impurities can be released into the environment. It is important to study the surface structure and transport mechanisms at temperatures near the melting point because the location of impurities and their interactions with water molecules in the ice are not yet sufficiently explained. In this work, the evolution of a scratch on the bicrystalline ice surface was studied at –5℃. The surface transport mechanisms near the melting point were studied and, as a consequence, the surface structure could be determined. An ice sample was kept immersed in ultra-pure silicone oil to prevent evaporation and, thus, isolate the effect of surface diffusion. The ice sample was made with water with chemical conditions similar to the water of polar ice sheets. Photographs of the scratch were taken periodically, for approximately 50 hours, using a photographic camera coupled to an optical microscope. From these images, the evolution of the width of the scratch was studied and the surface diffusion was the dominant transport mechanism in the experiment. Finally, the ice surface self-diffusion coefficient at –5℃ was determined and it was very similar to the super-cooled water diffusion coefficient. A liquid-like behavior of ice surfaces near the melting point was found and it could have a strong influence on the reaction rates with atmospheric gases. |
| publishDate |
2021 |
| dc.date.none.fl_str_mv |
2021-10 |
| dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
| format |
article |
| status_str |
publishedVersion |
| dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/184489 Aguirre Varela, Guillermo Gabriel; Di Prinzio, Carlos Leonardo; Stoler Flores, Damian; Ice surface near melting point: Effects on the tropospheric ice; Polish Academy of Sciences. Committee on Polar Research; Polish Polar Research; 42; 4; 10-2021; 237-248 0138-0338 2081-8262 CONICET Digital CONICET |
| url |
http://hdl.handle.net/11336/184489 |
| identifier_str_mv |
Aguirre Varela, Guillermo Gabriel; Di Prinzio, Carlos Leonardo; Stoler Flores, Damian; Ice surface near melting point: Effects on the tropospheric ice; Polish Academy of Sciences. Committee on Polar Research; Polish Polar Research; 42; 4; 10-2021; 237-248 0138-0338 2081-8262 CONICET Digital CONICET |
| dc.language.none.fl_str_mv |
eng |
| language |
eng |
| dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/url/https://journals.pan.pl/dlibra/publication/137144/edition/120127/content info:eu-repo/semantics/altIdentifier/doi/10.24425/ppr.2021.137144 |
| dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
| eu_rights_str_mv |
openAccess |
| rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
| dc.format.none.fl_str_mv |
application/pdf application/pdf |
| dc.publisher.none.fl_str_mv |
Polish Academy of Sciences. Committee on Polar Research |
| publisher.none.fl_str_mv |
Polish Academy of Sciences. Committee on Polar Research |
| dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
| reponame_str |
CONICET Digital (CONICET) |
| collection |
CONICET Digital (CONICET) |
| instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
| repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
| repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
| _version_ |
1846083501782204416 |
| score |
13.22299 |