Atomistic Simulation of Nanoindentation of Ice Ih
- Autores
- Santos Flórez, Pedro Antonio; Ruestes, Carlos Javier; De Koning, Maurice
- Año de publicación
- 2020
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- Using molecular dynamics simulations, we study the nanoindentation response of the ice Ih basal surface using two popular water models, namely, the all-atom TIP4P/Ice potential and the coarse-grained mW model. In particular, we consider two markedly different temperatures at which a quasi-liquid layer (QLL) is or is not present. We discuss loading curves, hardness estimates, deformation mechanisms, and residual imprints, considering the effect of the QLL, indenter size, and penetration rate. At very low temperatures, in the absence of a QLL, both potentials produce similar loading curves and deformation mechanisms. Close to the melting temperature, however, important differences were found, including deviations in the QLL thickness and fraction as well as the presence of a competition between pressure-induced melting and recrystallization events. Nevertheless, both potentials exhibit similar deformation mechanisms and steady-state hardness estimates that are consistent with experimental data. In addition to contributing to the discussion regarding the interpretation of experimental AFM loading curves, the present results provide valuable information concerning the simulation of contact problems involving ice and the behavior of these two popular water models under such circumstances.
Fil: Santos Flórez, Pedro Antonio. Universidade Estadual de Campinas; Brasil
Fil: Ruestes, Carlos Javier. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mendoza. Instituto Interdisciplinario de Ciencias Básicas. - Universidad Nacional de Cuyo. Instituto Interdisciplinario de Ciencias Básicas; Argentina
Fil: De Koning, Maurice. Universidade Estadual de Campinas; Brasil - Materia
-
hardness
ice
quasi-liquid layer
deformation - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/140981
Ver los metadatos del registro completo
id |
CONICETDig_4e6c6473c7b2e918b477f8e6afad71cd |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/140981 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Atomistic Simulation of Nanoindentation of Ice IhSantos Flórez, Pedro AntonioRuestes, Carlos JavierDe Koning, Mauricehardnessicequasi-liquid layerdeformationhttps://purl.org/becyt/ford/1.4https://purl.org/becyt/ford/1Using molecular dynamics simulations, we study the nanoindentation response of the ice Ih basal surface using two popular water models, namely, the all-atom TIP4P/Ice potential and the coarse-grained mW model. In particular, we consider two markedly different temperatures at which a quasi-liquid layer (QLL) is or is not present. We discuss loading curves, hardness estimates, deformation mechanisms, and residual imprints, considering the effect of the QLL, indenter size, and penetration rate. At very low temperatures, in the absence of a QLL, both potentials produce similar loading curves and deformation mechanisms. Close to the melting temperature, however, important differences were found, including deviations in the QLL thickness and fraction as well as the presence of a competition between pressure-induced melting and recrystallization events. Nevertheless, both potentials exhibit similar deformation mechanisms and steady-state hardness estimates that are consistent with experimental data. In addition to contributing to the discussion regarding the interpretation of experimental AFM loading curves, the present results provide valuable information concerning the simulation of contact problems involving ice and the behavior of these two popular water models under such circumstances.Fil: Santos Flórez, Pedro Antonio. Universidade Estadual de Campinas; BrasilFil: Ruestes, Carlos Javier. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mendoza. Instituto Interdisciplinario de Ciencias Básicas. - Universidad Nacional de Cuyo. Instituto Interdisciplinario de Ciencias Básicas; ArgentinaFil: De Koning, Maurice. Universidade Estadual de Campinas; BrasilAmerican Chemical Society2020-04info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/140981Santos Flórez, Pedro Antonio; Ruestes, Carlos Javier; De Koning, Maurice; Atomistic Simulation of Nanoindentation of Ice Ih; American Chemical Society; Journal of Physical Chemistry C; 124; 17; 4-2020; 9329-93361932-7447CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/https://pubs.acs.org/doi/abs/10.1021/acs.jpcc.0c00255info:eu-repo/semantics/altIdentifier/doi/10.1021/acs.jpcc.0c00255info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T09:51:00Zoai:ri.conicet.gov.ar:11336/140981instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 09:51:01.156CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Atomistic Simulation of Nanoindentation of Ice Ih |
title |
Atomistic Simulation of Nanoindentation of Ice Ih |
spellingShingle |
Atomistic Simulation of Nanoindentation of Ice Ih Santos Flórez, Pedro Antonio hardness ice quasi-liquid layer deformation |
title_short |
Atomistic Simulation of Nanoindentation of Ice Ih |
title_full |
Atomistic Simulation of Nanoindentation of Ice Ih |
title_fullStr |
Atomistic Simulation of Nanoindentation of Ice Ih |
title_full_unstemmed |
Atomistic Simulation of Nanoindentation of Ice Ih |
title_sort |
Atomistic Simulation of Nanoindentation of Ice Ih |
dc.creator.none.fl_str_mv |
Santos Flórez, Pedro Antonio Ruestes, Carlos Javier De Koning, Maurice |
author |
Santos Flórez, Pedro Antonio |
author_facet |
Santos Flórez, Pedro Antonio Ruestes, Carlos Javier De Koning, Maurice |
author_role |
author |
author2 |
Ruestes, Carlos Javier De Koning, Maurice |
author2_role |
author author |
dc.subject.none.fl_str_mv |
hardness ice quasi-liquid layer deformation |
topic |
hardness ice quasi-liquid layer deformation |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.4 https://purl.org/becyt/ford/1 |
dc.description.none.fl_txt_mv |
Using molecular dynamics simulations, we study the nanoindentation response of the ice Ih basal surface using two popular water models, namely, the all-atom TIP4P/Ice potential and the coarse-grained mW model. In particular, we consider two markedly different temperatures at which a quasi-liquid layer (QLL) is or is not present. We discuss loading curves, hardness estimates, deformation mechanisms, and residual imprints, considering the effect of the QLL, indenter size, and penetration rate. At very low temperatures, in the absence of a QLL, both potentials produce similar loading curves and deformation mechanisms. Close to the melting temperature, however, important differences were found, including deviations in the QLL thickness and fraction as well as the presence of a competition between pressure-induced melting and recrystallization events. Nevertheless, both potentials exhibit similar deformation mechanisms and steady-state hardness estimates that are consistent with experimental data. In addition to contributing to the discussion regarding the interpretation of experimental AFM loading curves, the present results provide valuable information concerning the simulation of contact problems involving ice and the behavior of these two popular water models under such circumstances. Fil: Santos Flórez, Pedro Antonio. Universidade Estadual de Campinas; Brasil Fil: Ruestes, Carlos Javier. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mendoza. Instituto Interdisciplinario de Ciencias Básicas. - Universidad Nacional de Cuyo. Instituto Interdisciplinario de Ciencias Básicas; Argentina Fil: De Koning, Maurice. Universidade Estadual de Campinas; Brasil |
description |
Using molecular dynamics simulations, we study the nanoindentation response of the ice Ih basal surface using two popular water models, namely, the all-atom TIP4P/Ice potential and the coarse-grained mW model. In particular, we consider two markedly different temperatures at which a quasi-liquid layer (QLL) is or is not present. We discuss loading curves, hardness estimates, deformation mechanisms, and residual imprints, considering the effect of the QLL, indenter size, and penetration rate. At very low temperatures, in the absence of a QLL, both potentials produce similar loading curves and deformation mechanisms. Close to the melting temperature, however, important differences were found, including deviations in the QLL thickness and fraction as well as the presence of a competition between pressure-induced melting and recrystallization events. Nevertheless, both potentials exhibit similar deformation mechanisms and steady-state hardness estimates that are consistent with experimental data. In addition to contributing to the discussion regarding the interpretation of experimental AFM loading curves, the present results provide valuable information concerning the simulation of contact problems involving ice and the behavior of these two popular water models under such circumstances. |
publishDate |
2020 |
dc.date.none.fl_str_mv |
2020-04 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/140981 Santos Flórez, Pedro Antonio; Ruestes, Carlos Javier; De Koning, Maurice; Atomistic Simulation of Nanoindentation of Ice Ih; American Chemical Society; Journal of Physical Chemistry C; 124; 17; 4-2020; 9329-9336 1932-7447 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/140981 |
identifier_str_mv |
Santos Flórez, Pedro Antonio; Ruestes, Carlos Javier; De Koning, Maurice; Atomistic Simulation of Nanoindentation of Ice Ih; American Chemical Society; Journal of Physical Chemistry C; 124; 17; 4-2020; 9329-9336 1932-7447 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/url/https://pubs.acs.org/doi/abs/10.1021/acs.jpcc.0c00255 info:eu-repo/semantics/altIdentifier/doi/10.1021/acs.jpcc.0c00255 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
American Chemical Society |
publisher.none.fl_str_mv |
American Chemical Society |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1844613569744732160 |
score |
13.070432 |