Atomistic Simulation of Nanoindentation of Ice Ih

Autores
Santos Flórez, Pedro Antonio; Ruestes, Carlos Javier; De Koning, Maurice
Año de publicación
2020
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
Using molecular dynamics simulations, we study the nanoindentation response of the ice Ih basal surface using two popular water models, namely, the all-atom TIP4P/Ice potential and the coarse-grained mW model. In particular, we consider two markedly different temperatures at which a quasi-liquid layer (QLL) is or is not present. We discuss loading curves, hardness estimates, deformation mechanisms, and residual imprints, considering the effect of the QLL, indenter size, and penetration rate. At very low temperatures, in the absence of a QLL, both potentials produce similar loading curves and deformation mechanisms. Close to the melting temperature, however, important differences were found, including deviations in the QLL thickness and fraction as well as the presence of a competition between pressure-induced melting and recrystallization events. Nevertheless, both potentials exhibit similar deformation mechanisms and steady-state hardness estimates that are consistent with experimental data. In addition to contributing to the discussion regarding the interpretation of experimental AFM loading curves, the present results provide valuable information concerning the simulation of contact problems involving ice and the behavior of these two popular water models under such circumstances.
Fil: Santos Flórez, Pedro Antonio. Universidade Estadual de Campinas; Brasil
Fil: Ruestes, Carlos Javier. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mendoza. Instituto Interdisciplinario de Ciencias Básicas. - Universidad Nacional de Cuyo. Instituto Interdisciplinario de Ciencias Básicas; Argentina
Fil: De Koning, Maurice. Universidade Estadual de Campinas; Brasil
Materia
hardness
ice
quasi-liquid layer
deformation
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/140981

id CONICETDig_4e6c6473c7b2e918b477f8e6afad71cd
oai_identifier_str oai:ri.conicet.gov.ar:11336/140981
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling Atomistic Simulation of Nanoindentation of Ice IhSantos Flórez, Pedro AntonioRuestes, Carlos JavierDe Koning, Mauricehardnessicequasi-liquid layerdeformationhttps://purl.org/becyt/ford/1.4https://purl.org/becyt/ford/1Using molecular dynamics simulations, we study the nanoindentation response of the ice Ih basal surface using two popular water models, namely, the all-atom TIP4P/Ice potential and the coarse-grained mW model. In particular, we consider two markedly different temperatures at which a quasi-liquid layer (QLL) is or is not present. We discuss loading curves, hardness estimates, deformation mechanisms, and residual imprints, considering the effect of the QLL, indenter size, and penetration rate. At very low temperatures, in the absence of a QLL, both potentials produce similar loading curves and deformation mechanisms. Close to the melting temperature, however, important differences were found, including deviations in the QLL thickness and fraction as well as the presence of a competition between pressure-induced melting and recrystallization events. Nevertheless, both potentials exhibit similar deformation mechanisms and steady-state hardness estimates that are consistent with experimental data. In addition to contributing to the discussion regarding the interpretation of experimental AFM loading curves, the present results provide valuable information concerning the simulation of contact problems involving ice and the behavior of these two popular water models under such circumstances.Fil: Santos Flórez, Pedro Antonio. Universidade Estadual de Campinas; BrasilFil: Ruestes, Carlos Javier. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mendoza. Instituto Interdisciplinario de Ciencias Básicas. - Universidad Nacional de Cuyo. Instituto Interdisciplinario de Ciencias Básicas; ArgentinaFil: De Koning, Maurice. Universidade Estadual de Campinas; BrasilAmerican Chemical Society2020-04info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/140981Santos Flórez, Pedro Antonio; Ruestes, Carlos Javier; De Koning, Maurice; Atomistic Simulation of Nanoindentation of Ice Ih; American Chemical Society; Journal of Physical Chemistry C; 124; 17; 4-2020; 9329-93361932-7447CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/https://pubs.acs.org/doi/abs/10.1021/acs.jpcc.0c00255info:eu-repo/semantics/altIdentifier/doi/10.1021/acs.jpcc.0c00255info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T09:51:00Zoai:ri.conicet.gov.ar:11336/140981instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 09:51:01.156CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv Atomistic Simulation of Nanoindentation of Ice Ih
title Atomistic Simulation of Nanoindentation of Ice Ih
spellingShingle Atomistic Simulation of Nanoindentation of Ice Ih
Santos Flórez, Pedro Antonio
hardness
ice
quasi-liquid layer
deformation
title_short Atomistic Simulation of Nanoindentation of Ice Ih
title_full Atomistic Simulation of Nanoindentation of Ice Ih
title_fullStr Atomistic Simulation of Nanoindentation of Ice Ih
title_full_unstemmed Atomistic Simulation of Nanoindentation of Ice Ih
title_sort Atomistic Simulation of Nanoindentation of Ice Ih
dc.creator.none.fl_str_mv Santos Flórez, Pedro Antonio
Ruestes, Carlos Javier
De Koning, Maurice
author Santos Flórez, Pedro Antonio
author_facet Santos Flórez, Pedro Antonio
Ruestes, Carlos Javier
De Koning, Maurice
author_role author
author2 Ruestes, Carlos Javier
De Koning, Maurice
author2_role author
author
dc.subject.none.fl_str_mv hardness
ice
quasi-liquid layer
deformation
topic hardness
ice
quasi-liquid layer
deformation
purl_subject.fl_str_mv https://purl.org/becyt/ford/1.4
https://purl.org/becyt/ford/1
dc.description.none.fl_txt_mv Using molecular dynamics simulations, we study the nanoindentation response of the ice Ih basal surface using two popular water models, namely, the all-atom TIP4P/Ice potential and the coarse-grained mW model. In particular, we consider two markedly different temperatures at which a quasi-liquid layer (QLL) is or is not present. We discuss loading curves, hardness estimates, deformation mechanisms, and residual imprints, considering the effect of the QLL, indenter size, and penetration rate. At very low temperatures, in the absence of a QLL, both potentials produce similar loading curves and deformation mechanisms. Close to the melting temperature, however, important differences were found, including deviations in the QLL thickness and fraction as well as the presence of a competition between pressure-induced melting and recrystallization events. Nevertheless, both potentials exhibit similar deformation mechanisms and steady-state hardness estimates that are consistent with experimental data. In addition to contributing to the discussion regarding the interpretation of experimental AFM loading curves, the present results provide valuable information concerning the simulation of contact problems involving ice and the behavior of these two popular water models under such circumstances.
Fil: Santos Flórez, Pedro Antonio. Universidade Estadual de Campinas; Brasil
Fil: Ruestes, Carlos Javier. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mendoza. Instituto Interdisciplinario de Ciencias Básicas. - Universidad Nacional de Cuyo. Instituto Interdisciplinario de Ciencias Básicas; Argentina
Fil: De Koning, Maurice. Universidade Estadual de Campinas; Brasil
description Using molecular dynamics simulations, we study the nanoindentation response of the ice Ih basal surface using two popular water models, namely, the all-atom TIP4P/Ice potential and the coarse-grained mW model. In particular, we consider two markedly different temperatures at which a quasi-liquid layer (QLL) is or is not present. We discuss loading curves, hardness estimates, deformation mechanisms, and residual imprints, considering the effect of the QLL, indenter size, and penetration rate. At very low temperatures, in the absence of a QLL, both potentials produce similar loading curves and deformation mechanisms. Close to the melting temperature, however, important differences were found, including deviations in the QLL thickness and fraction as well as the presence of a competition between pressure-induced melting and recrystallization events. Nevertheless, both potentials exhibit similar deformation mechanisms and steady-state hardness estimates that are consistent with experimental data. In addition to contributing to the discussion regarding the interpretation of experimental AFM loading curves, the present results provide valuable information concerning the simulation of contact problems involving ice and the behavior of these two popular water models under such circumstances.
publishDate 2020
dc.date.none.fl_str_mv 2020-04
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/140981
Santos Flórez, Pedro Antonio; Ruestes, Carlos Javier; De Koning, Maurice; Atomistic Simulation of Nanoindentation of Ice Ih; American Chemical Society; Journal of Physical Chemistry C; 124; 17; 4-2020; 9329-9336
1932-7447
CONICET Digital
CONICET
url http://hdl.handle.net/11336/140981
identifier_str_mv Santos Flórez, Pedro Antonio; Ruestes, Carlos Javier; De Koning, Maurice; Atomistic Simulation of Nanoindentation of Ice Ih; American Chemical Society; Journal of Physical Chemistry C; 124; 17; 4-2020; 9329-9336
1932-7447
CONICET Digital
CONICET
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/url/https://pubs.acs.org/doi/abs/10.1021/acs.jpcc.0c00255
info:eu-repo/semantics/altIdentifier/doi/10.1021/acs.jpcc.0c00255
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
dc.publisher.none.fl_str_mv American Chemical Society
publisher.none.fl_str_mv American Chemical Society
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1844613569744732160
score 13.070432