A PDE Approach to the Existence and Regularity of Surfaces of Minimum Mean Curvature Variation
- Autores
- Caffarelli, Luis A.; Stinga, Pablo Raul; Vivas, Hernán Agustín
- Año de publicación
- 2024
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- We develop an analytic theory of existence and regularity of surfaces (given by graphs) arising from the geometric minimization problem min M 1 2 ˆ M |∇MH| 2 dA where M ranges over all n-dimensional manifolds in R n+1 with prescribed boundary, ∇MH is the tangential gradient along M of the mean curvature H of M and dA is the differential of surface area. The minimizers, called surfaces of minimum mean curvature variation, are central in applications of computer-aided design, computer-aided manufacturing and mechanics. Our main results show the existence of both smooth surfaces and of variational solutions to the minimization problem together with geometric regularity results in the case of graphs. These are the first analytic results available on the literature for this problem.
Fil: Caffarelli, Luis A.. University of Texas at Austin; Estados Unidos
Fil: Stinga, Pablo Raul. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Iowa State University; Estados Unidos
Fil: Vivas, Hernán Agustín. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad Nacional de Mar del Plata. Facultad de Cs.exactas y Naturales. Centro Marplatense de Investigaciones Matematicas.; Argentina - Materia
-
DIFFERENTIAL GEOMETRY
SURFACES OF MINIMUM CURVATURE VARIATON
MINIMAL SURFACES - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
.jpg)
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/275841
Ver los metadatos del registro completo
| id |
CONICETDig_8c8b62d54a03a3efc721bf47159b27bd |
|---|---|
| oai_identifier_str |
oai:ri.conicet.gov.ar:11336/275841 |
| network_acronym_str |
CONICETDig |
| repository_id_str |
3498 |
| network_name_str |
CONICET Digital (CONICET) |
| spelling |
A PDE Approach to the Existence and Regularity of Surfaces of Minimum Mean Curvature VariationCaffarelli, Luis A.Stinga, Pablo RaulVivas, Hernán AgustínDIFFERENTIAL GEOMETRYSURFACES OF MINIMUM CURVATURE VARIATONMINIMAL SURFACEShttps://purl.org/becyt/ford/1.1https://purl.org/becyt/ford/1We develop an analytic theory of existence and regularity of surfaces (given by graphs) arising from the geometric minimization problem min M 1 2 ˆ M |∇MH| 2 dA where M ranges over all n-dimensional manifolds in R n+1 with prescribed boundary, ∇MH is the tangential gradient along M of the mean curvature H of M and dA is the differential of surface area. The minimizers, called surfaces of minimum mean curvature variation, are central in applications of computer-aided design, computer-aided manufacturing and mechanics. Our main results show the existence of both smooth surfaces and of variational solutions to the minimization problem together with geometric regularity results in the case of graphs. These are the first analytic results available on the literature for this problem.Fil: Caffarelli, Luis A.. University of Texas at Austin; Estados UnidosFil: Stinga, Pablo Raul. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Iowa State University; Estados UnidosFil: Vivas, Hernán Agustín. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad Nacional de Mar del Plata. Facultad de Cs.exactas y Naturales. Centro Marplatense de Investigaciones Matematicas.; ArgentinaSpringer2024-08info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/275841Caffarelli, Luis A.; Stinga, Pablo Raul; Vivas, Hernán Agustín; A PDE Approach to the Existence and Regularity of Surfaces of Minimum Mean Curvature Variation; Springer; Archive For Rational Mechanics And Analysis; 248; 5; 8-2024; 1-130003-9527CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/https://link.springer.com/article/10.1007/s00205-024-02016-5info:eu-repo/semantics/altIdentifier/doi/10.1007/s00205-024-02016-5info:eu-repo/semantics/altIdentifier/arxiv/https://arxiv.org/abs/2301.00082info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-12-23T13:38:05Zoai:ri.conicet.gov.ar:11336/275841instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-12-23 13:38:05.407CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
| dc.title.none.fl_str_mv |
A PDE Approach to the Existence and Regularity of Surfaces of Minimum Mean Curvature Variation |
| title |
A PDE Approach to the Existence and Regularity of Surfaces of Minimum Mean Curvature Variation |
| spellingShingle |
A PDE Approach to the Existence and Regularity of Surfaces of Minimum Mean Curvature Variation Caffarelli, Luis A. DIFFERENTIAL GEOMETRY SURFACES OF MINIMUM CURVATURE VARIATON MINIMAL SURFACES |
| title_short |
A PDE Approach to the Existence and Regularity of Surfaces of Minimum Mean Curvature Variation |
| title_full |
A PDE Approach to the Existence and Regularity of Surfaces of Minimum Mean Curvature Variation |
| title_fullStr |
A PDE Approach to the Existence and Regularity of Surfaces of Minimum Mean Curvature Variation |
| title_full_unstemmed |
A PDE Approach to the Existence and Regularity of Surfaces of Minimum Mean Curvature Variation |
| title_sort |
A PDE Approach to the Existence and Regularity of Surfaces of Minimum Mean Curvature Variation |
| dc.creator.none.fl_str_mv |
Caffarelli, Luis A. Stinga, Pablo Raul Vivas, Hernán Agustín |
| author |
Caffarelli, Luis A. |
| author_facet |
Caffarelli, Luis A. Stinga, Pablo Raul Vivas, Hernán Agustín |
| author_role |
author |
| author2 |
Stinga, Pablo Raul Vivas, Hernán Agustín |
| author2_role |
author author |
| dc.subject.none.fl_str_mv |
DIFFERENTIAL GEOMETRY SURFACES OF MINIMUM CURVATURE VARIATON MINIMAL SURFACES |
| topic |
DIFFERENTIAL GEOMETRY SURFACES OF MINIMUM CURVATURE VARIATON MINIMAL SURFACES |
| purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.1 https://purl.org/becyt/ford/1 |
| dc.description.none.fl_txt_mv |
We develop an analytic theory of existence and regularity of surfaces (given by graphs) arising from the geometric minimization problem min M 1 2 ˆ M |∇MH| 2 dA where M ranges over all n-dimensional manifolds in R n+1 with prescribed boundary, ∇MH is the tangential gradient along M of the mean curvature H of M and dA is the differential of surface area. The minimizers, called surfaces of minimum mean curvature variation, are central in applications of computer-aided design, computer-aided manufacturing and mechanics. Our main results show the existence of both smooth surfaces and of variational solutions to the minimization problem together with geometric regularity results in the case of graphs. These are the first analytic results available on the literature for this problem. Fil: Caffarelli, Luis A.. University of Texas at Austin; Estados Unidos Fil: Stinga, Pablo Raul. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Iowa State University; Estados Unidos Fil: Vivas, Hernán Agustín. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad Nacional de Mar del Plata. Facultad de Cs.exactas y Naturales. Centro Marplatense de Investigaciones Matematicas.; Argentina |
| description |
We develop an analytic theory of existence and regularity of surfaces (given by graphs) arising from the geometric minimization problem min M 1 2 ˆ M |∇MH| 2 dA where M ranges over all n-dimensional manifolds in R n+1 with prescribed boundary, ∇MH is the tangential gradient along M of the mean curvature H of M and dA is the differential of surface area. The minimizers, called surfaces of minimum mean curvature variation, are central in applications of computer-aided design, computer-aided manufacturing and mechanics. Our main results show the existence of both smooth surfaces and of variational solutions to the minimization problem together with geometric regularity results in the case of graphs. These are the first analytic results available on the literature for this problem. |
| publishDate |
2024 |
| dc.date.none.fl_str_mv |
2024-08 |
| dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
| format |
article |
| status_str |
publishedVersion |
| dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/275841 Caffarelli, Luis A.; Stinga, Pablo Raul; Vivas, Hernán Agustín; A PDE Approach to the Existence and Regularity of Surfaces of Minimum Mean Curvature Variation; Springer; Archive For Rational Mechanics And Analysis; 248; 5; 8-2024; 1-13 0003-9527 CONICET Digital CONICET |
| url |
http://hdl.handle.net/11336/275841 |
| identifier_str_mv |
Caffarelli, Luis A.; Stinga, Pablo Raul; Vivas, Hernán Agustín; A PDE Approach to the Existence and Regularity of Surfaces of Minimum Mean Curvature Variation; Springer; Archive For Rational Mechanics And Analysis; 248; 5; 8-2024; 1-13 0003-9527 CONICET Digital CONICET |
| dc.language.none.fl_str_mv |
eng |
| language |
eng |
| dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/url/https://link.springer.com/article/10.1007/s00205-024-02016-5 info:eu-repo/semantics/altIdentifier/doi/10.1007/s00205-024-02016-5 info:eu-repo/semantics/altIdentifier/arxiv/https://arxiv.org/abs/2301.00082 |
| dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
| eu_rights_str_mv |
openAccess |
| rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
| dc.format.none.fl_str_mv |
application/pdf application/pdf application/pdf |
| dc.publisher.none.fl_str_mv |
Springer |
| publisher.none.fl_str_mv |
Springer |
| dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
| reponame_str |
CONICET Digital (CONICET) |
| collection |
CONICET Digital (CONICET) |
| instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
| repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
| repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
| _version_ |
1852335275981668352 |
| score |
12.952241 |