Approximated algorithms for the Minimum Dilation Triangulation Problem
- Autores
- Dorzán, Maria Gisela; Leguizamon, Mario Guillermo; Mezura Montes, Efrén; Hernández Peñalver, Gregorio
- Año de publicación
- 2014
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- The complexity status of the Minimum Dilation Triangulation (MDT) problem for a general point set is unknown. Therefore, we focus on the development of approximated algorithms to find high quality triangulations of minimum dilation. For an initial approach, we design a greedy strategy able to obtain approximate solutions to the optimal ones in a simple way. We also propose an operator to generate the neighborhood which is used in different algorithms: Local Search, Iterated Local Search, and Simulated Annealing. Besides, we present an algorithm called Random Local Search where good and bad solutions are accepted using the previous mentioned operator. For the experimental study we have created a set of problem instances since no reference to benchmarks for these problems were found in the literature. We use the Sequential Parameter Optimization Toolbox for tuning the parameters of the SA algorithm. We compare our results with those obtained by the OV-MDT algorithm that uses the obstacle value to sort the edges in the constructive process. This is the only available algorithm found in the literature. Through the experimental evaluation and statistical analysis, we assess the performance of the proposed algorithms using this operator.
Fil: Dorzán, Maria Gisela. Universidad Nacional de San Luis; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico San Luis; Argentina
Fil: Leguizamon, Mario Guillermo. Universidad Nacional de San Luis; Argentina
Fil: Mezura Montes, Efrén. Universidad Veracruzana; México
Fil: Hernández Peñalver, Gregorio. Universidad Politecnica de Madrid; España - Materia
-
Computational Geometry
Metaheuristics
Triangulation
Minimum Dilation - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/7565
Ver los metadatos del registro completo
id |
CONICETDig_f2fdaea53882b9d1be068ad27718f3e0 |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/7565 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Approximated algorithms for the Minimum Dilation Triangulation ProblemDorzán, Maria GiselaLeguizamon, Mario GuillermoMezura Montes, EfrénHernández Peñalver, GregorioComputational GeometryMetaheuristicsTriangulationMinimum Dilationhttps://purl.org/becyt/ford/1.2https://purl.org/becyt/ford/1The complexity status of the Minimum Dilation Triangulation (MDT) problem for a general point set is unknown. Therefore, we focus on the development of approximated algorithms to find high quality triangulations of minimum dilation. For an initial approach, we design a greedy strategy able to obtain approximate solutions to the optimal ones in a simple way. We also propose an operator to generate the neighborhood which is used in different algorithms: Local Search, Iterated Local Search, and Simulated Annealing. Besides, we present an algorithm called Random Local Search where good and bad solutions are accepted using the previous mentioned operator. For the experimental study we have created a set of problem instances since no reference to benchmarks for these problems were found in the literature. We use the Sequential Parameter Optimization Toolbox for tuning the parameters of the SA algorithm. We compare our results with those obtained by the OV-MDT algorithm that uses the obstacle value to sort the edges in the constructive process. This is the only available algorithm found in the literature. Through the experimental evaluation and statistical analysis, we assess the performance of the proposed algorithms using this operator.Fil: Dorzán, Maria Gisela. Universidad Nacional de San Luis; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico San Luis; ArgentinaFil: Leguizamon, Mario Guillermo. Universidad Nacional de San Luis; ArgentinaFil: Mezura Montes, Efrén. Universidad Veracruzana; MéxicoFil: Hernández Peñalver, Gregorio. Universidad Politecnica de Madrid; EspañaSpringer2014-01info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/7565Dorzán, Maria Gisela; Leguizamon, Mario Guillermo; Mezura Montes, Efrén; Hernández Peñalver, Gregorio; Approximated algorithms for the Minimum Dilation Triangulation Problem; Springer; Journal Of Heuristics; 20; 2; 1-2014; 189-2091381-1231enginfo:eu-repo/semantics/altIdentifier/url/http://link.springer.com/article/10.1007/s10732-014-9237-2info:eu-repo/semantics/altIdentifier/doi/10.1007/s10732-014-9237-2info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T10:18:25Zoai:ri.conicet.gov.ar:11336/7565instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 10:18:25.879CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Approximated algorithms for the Minimum Dilation Triangulation Problem |
title |
Approximated algorithms for the Minimum Dilation Triangulation Problem |
spellingShingle |
Approximated algorithms for the Minimum Dilation Triangulation Problem Dorzán, Maria Gisela Computational Geometry Metaheuristics Triangulation Minimum Dilation |
title_short |
Approximated algorithms for the Minimum Dilation Triangulation Problem |
title_full |
Approximated algorithms for the Minimum Dilation Triangulation Problem |
title_fullStr |
Approximated algorithms for the Minimum Dilation Triangulation Problem |
title_full_unstemmed |
Approximated algorithms for the Minimum Dilation Triangulation Problem |
title_sort |
Approximated algorithms for the Minimum Dilation Triangulation Problem |
dc.creator.none.fl_str_mv |
Dorzán, Maria Gisela Leguizamon, Mario Guillermo Mezura Montes, Efrén Hernández Peñalver, Gregorio |
author |
Dorzán, Maria Gisela |
author_facet |
Dorzán, Maria Gisela Leguizamon, Mario Guillermo Mezura Montes, Efrén Hernández Peñalver, Gregorio |
author_role |
author |
author2 |
Leguizamon, Mario Guillermo Mezura Montes, Efrén Hernández Peñalver, Gregorio |
author2_role |
author author author |
dc.subject.none.fl_str_mv |
Computational Geometry Metaheuristics Triangulation Minimum Dilation |
topic |
Computational Geometry Metaheuristics Triangulation Minimum Dilation |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.2 https://purl.org/becyt/ford/1 |
dc.description.none.fl_txt_mv |
The complexity status of the Minimum Dilation Triangulation (MDT) problem for a general point set is unknown. Therefore, we focus on the development of approximated algorithms to find high quality triangulations of minimum dilation. For an initial approach, we design a greedy strategy able to obtain approximate solutions to the optimal ones in a simple way. We also propose an operator to generate the neighborhood which is used in different algorithms: Local Search, Iterated Local Search, and Simulated Annealing. Besides, we present an algorithm called Random Local Search where good and bad solutions are accepted using the previous mentioned operator. For the experimental study we have created a set of problem instances since no reference to benchmarks for these problems were found in the literature. We use the Sequential Parameter Optimization Toolbox for tuning the parameters of the SA algorithm. We compare our results with those obtained by the OV-MDT algorithm that uses the obstacle value to sort the edges in the constructive process. This is the only available algorithm found in the literature. Through the experimental evaluation and statistical analysis, we assess the performance of the proposed algorithms using this operator. Fil: Dorzán, Maria Gisela. Universidad Nacional de San Luis; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico San Luis; Argentina Fil: Leguizamon, Mario Guillermo. Universidad Nacional de San Luis; Argentina Fil: Mezura Montes, Efrén. Universidad Veracruzana; México Fil: Hernández Peñalver, Gregorio. Universidad Politecnica de Madrid; España |
description |
The complexity status of the Minimum Dilation Triangulation (MDT) problem for a general point set is unknown. Therefore, we focus on the development of approximated algorithms to find high quality triangulations of minimum dilation. For an initial approach, we design a greedy strategy able to obtain approximate solutions to the optimal ones in a simple way. We also propose an operator to generate the neighborhood which is used in different algorithms: Local Search, Iterated Local Search, and Simulated Annealing. Besides, we present an algorithm called Random Local Search where good and bad solutions are accepted using the previous mentioned operator. For the experimental study we have created a set of problem instances since no reference to benchmarks for these problems were found in the literature. We use the Sequential Parameter Optimization Toolbox for tuning the parameters of the SA algorithm. We compare our results with those obtained by the OV-MDT algorithm that uses the obstacle value to sort the edges in the constructive process. This is the only available algorithm found in the literature. Through the experimental evaluation and statistical analysis, we assess the performance of the proposed algorithms using this operator. |
publishDate |
2014 |
dc.date.none.fl_str_mv |
2014-01 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/7565 Dorzán, Maria Gisela; Leguizamon, Mario Guillermo; Mezura Montes, Efrén; Hernández Peñalver, Gregorio; Approximated algorithms for the Minimum Dilation Triangulation Problem; Springer; Journal Of Heuristics; 20; 2; 1-2014; 189-209 1381-1231 |
url |
http://hdl.handle.net/11336/7565 |
identifier_str_mv |
Dorzán, Maria Gisela; Leguizamon, Mario Guillermo; Mezura Montes, Efrén; Hernández Peñalver, Gregorio; Approximated algorithms for the Minimum Dilation Triangulation Problem; Springer; Journal Of Heuristics; 20; 2; 1-2014; 189-209 1381-1231 |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/url/http://link.springer.com/article/10.1007/s10732-014-9237-2 info:eu-repo/semantics/altIdentifier/doi/10.1007/s10732-014-9237-2 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
Springer |
publisher.none.fl_str_mv |
Springer |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1844614146060976128 |
score |
13.069144 |