Empirical mode decomposition of multiphase flows in porous media: Characteristic scales and speed of convergence
- Autores
- Echebarrena, Nicolas; Mininni, Pablo Daniel; Moreno, Gustavo Ariel
- Año de publicación
- 2019
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- We apply a proper orthogonal decomposition (POD) to data stemming from numerical simulations of a fingering instability in a multiphase flow passing through obstacles in a porous medium, to study water injection processes in the production of hydrocarbon reservoirs. We show that the time evolution of a properly defined flow correlation length can be used to identify the onset of the fingering instability. Computation of characteristic lengths for each of the modes resulting from the POD provides further information on the dynamics of the system. Finally, using numerical simulations with different viscosity ratios, we show that the convergence of the POD depends non-trivially on whether the fingering instability develops or not. This result has implications on proposed methods to decrease the dimensionality of the problem by deriving reduced dynamical systems after truncating the system’s governing equations to a few POD modes.
Fil: Echebarrena, Nicolas. YPF - Tecnología; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
Fil: Mininni, Pablo Daniel. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Física; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Física de Buenos Aires. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Física de Buenos Aires; Argentina
Fil: Moreno, Gustavo Ariel. YPF - Tecnología; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina - Materia
-
EMPIRICAL MODE DECOMPOSITION
POROUS MEDIA
TWO-PHASE FLOW
VISCOUS FINGERING - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/148002
Ver los metadatos del registro completo
id |
CONICETDig_8c836f66dda0100936245a5d55cd1328 |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/148002 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Empirical mode decomposition of multiphase flows in porous media: Characteristic scales and speed of convergenceEchebarrena, NicolasMininni, Pablo DanielMoreno, Gustavo ArielEMPIRICAL MODE DECOMPOSITIONPOROUS MEDIATWO-PHASE FLOWVISCOUS FINGERINGhttps://purl.org/becyt/ford/1.3https://purl.org/becyt/ford/1We apply a proper orthogonal decomposition (POD) to data stemming from numerical simulations of a fingering instability in a multiphase flow passing through obstacles in a porous medium, to study water injection processes in the production of hydrocarbon reservoirs. We show that the time evolution of a properly defined flow correlation length can be used to identify the onset of the fingering instability. Computation of characteristic lengths for each of the modes resulting from the POD provides further information on the dynamics of the system. Finally, using numerical simulations with different viscosity ratios, we show that the convergence of the POD depends non-trivially on whether the fingering instability develops or not. This result has implications on proposed methods to decrease the dimensionality of the problem by deriving reduced dynamical systems after truncating the system’s governing equations to a few POD modes.Fil: Echebarrena, Nicolas. YPF - Tecnología; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Mininni, Pablo Daniel. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Física; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Física de Buenos Aires. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Física de Buenos Aires; ArgentinaFil: Moreno, Gustavo Ariel. YPF - Tecnología; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaChina University of Petroleum Beijing2019-10-22info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/148002Echebarrena, Nicolas; Mininni, Pablo Daniel; Moreno, Gustavo Ariel; Empirical mode decomposition of multiphase flows in porous media: Characteristic scales and speed of convergence; China University of Petroleum Beijing; Petroleum Science; 17; 1; 22-10-2019; 153-1671672-5107CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/http://link.springer.com/10.1007/s12182-019-00382-4info:eu-repo/semantics/altIdentifier/doi/10.1007/s12182-019-00382-4info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T10:03:17Zoai:ri.conicet.gov.ar:11336/148002instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 10:03:17.853CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Empirical mode decomposition of multiphase flows in porous media: Characteristic scales and speed of convergence |
title |
Empirical mode decomposition of multiphase flows in porous media: Characteristic scales and speed of convergence |
spellingShingle |
Empirical mode decomposition of multiphase flows in porous media: Characteristic scales and speed of convergence Echebarrena, Nicolas EMPIRICAL MODE DECOMPOSITION POROUS MEDIA TWO-PHASE FLOW VISCOUS FINGERING |
title_short |
Empirical mode decomposition of multiphase flows in porous media: Characteristic scales and speed of convergence |
title_full |
Empirical mode decomposition of multiphase flows in porous media: Characteristic scales and speed of convergence |
title_fullStr |
Empirical mode decomposition of multiphase flows in porous media: Characteristic scales and speed of convergence |
title_full_unstemmed |
Empirical mode decomposition of multiphase flows in porous media: Characteristic scales and speed of convergence |
title_sort |
Empirical mode decomposition of multiphase flows in porous media: Characteristic scales and speed of convergence |
dc.creator.none.fl_str_mv |
Echebarrena, Nicolas Mininni, Pablo Daniel Moreno, Gustavo Ariel |
author |
Echebarrena, Nicolas |
author_facet |
Echebarrena, Nicolas Mininni, Pablo Daniel Moreno, Gustavo Ariel |
author_role |
author |
author2 |
Mininni, Pablo Daniel Moreno, Gustavo Ariel |
author2_role |
author author |
dc.subject.none.fl_str_mv |
EMPIRICAL MODE DECOMPOSITION POROUS MEDIA TWO-PHASE FLOW VISCOUS FINGERING |
topic |
EMPIRICAL MODE DECOMPOSITION POROUS MEDIA TWO-PHASE FLOW VISCOUS FINGERING |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.3 https://purl.org/becyt/ford/1 |
dc.description.none.fl_txt_mv |
We apply a proper orthogonal decomposition (POD) to data stemming from numerical simulations of a fingering instability in a multiphase flow passing through obstacles in a porous medium, to study water injection processes in the production of hydrocarbon reservoirs. We show that the time evolution of a properly defined flow correlation length can be used to identify the onset of the fingering instability. Computation of characteristic lengths for each of the modes resulting from the POD provides further information on the dynamics of the system. Finally, using numerical simulations with different viscosity ratios, we show that the convergence of the POD depends non-trivially on whether the fingering instability develops or not. This result has implications on proposed methods to decrease the dimensionality of the problem by deriving reduced dynamical systems after truncating the system’s governing equations to a few POD modes. Fil: Echebarrena, Nicolas. YPF - Tecnología; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina Fil: Mininni, Pablo Daniel. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Física; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Física de Buenos Aires. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Física de Buenos Aires; Argentina Fil: Moreno, Gustavo Ariel. YPF - Tecnología; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina |
description |
We apply a proper orthogonal decomposition (POD) to data stemming from numerical simulations of a fingering instability in a multiphase flow passing through obstacles in a porous medium, to study water injection processes in the production of hydrocarbon reservoirs. We show that the time evolution of a properly defined flow correlation length can be used to identify the onset of the fingering instability. Computation of characteristic lengths for each of the modes resulting from the POD provides further information on the dynamics of the system. Finally, using numerical simulations with different viscosity ratios, we show that the convergence of the POD depends non-trivially on whether the fingering instability develops or not. This result has implications on proposed methods to decrease the dimensionality of the problem by deriving reduced dynamical systems after truncating the system’s governing equations to a few POD modes. |
publishDate |
2019 |
dc.date.none.fl_str_mv |
2019-10-22 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/148002 Echebarrena, Nicolas; Mininni, Pablo Daniel; Moreno, Gustavo Ariel; Empirical mode decomposition of multiphase flows in porous media: Characteristic scales and speed of convergence; China University of Petroleum Beijing; Petroleum Science; 17; 1; 22-10-2019; 153-167 1672-5107 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/148002 |
identifier_str_mv |
Echebarrena, Nicolas; Mininni, Pablo Daniel; Moreno, Gustavo Ariel; Empirical mode decomposition of multiphase flows in porous media: Characteristic scales and speed of convergence; China University of Petroleum Beijing; Petroleum Science; 17; 1; 22-10-2019; 153-167 1672-5107 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/url/http://link.springer.com/10.1007/s12182-019-00382-4 info:eu-repo/semantics/altIdentifier/doi/10.1007/s12182-019-00382-4 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
China University of Petroleum Beijing |
publisher.none.fl_str_mv |
China University of Petroleum Beijing |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1844613846968303616 |
score |
13.070432 |