Spatial stability of similarity solutions for viscous flows in channels with porous walls
- Autores
- Ferro, S.; Gnavi, G.
- Año de publicación
- 2000
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- The spatial stability of similarity solutions for an incompressible fluid flowing along a channel with porous walls and driven by constant uniform suction along the walls is analyzed. This work extends the results of Durlofsky and Brady [Phys. Fluids 27, 1068 (1984)] to a wider class of similarity solutions, and examines the spatial stability of small amplitude perturbations of arbitrary shape, generated at the entrance of the channel. It is found that antisymmetric perturbations are the best candidates to destabilize the solutions. Temporally stable asymmetric solutions with flow reversal presented by Zaturska, Drazin, and Banks [Fluid Dyn. Res. 4, 151 (1988)] are found to be spatially unstable. The perturbed similarity solutions are also compared with fully bidimensional ones obtained with a finite difference code. The results confirm the importance of similarity solutions and the validity of the stability analysis in a region whose distance to the center of the channel is more than three times the channel half-width. © 2000 American Institute of Physics.
Fil:Ferro, S. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina.
Fil:Gnavi, G. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina. - Fuente
- Phys Fluids 2000;12(4):797-802
- Materia
-
channel flow
mathematical analysis
Navier-Stokes equations
porous medium
viscous flow - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- http://creativecommons.org/licenses/by/2.5/ar
- Repositorio
- Institución
- Universidad Nacional de Buenos Aires. Facultad de Ciencias Exactas y Naturales
- OAI Identificador
- paperaa:paper_10706631_v12_n4_p797_Ferro
Ver los metadatos del registro completo
id |
BDUBAFCEN_9822fa76abb9965e081ba400afb1cbb1 |
---|---|
oai_identifier_str |
paperaa:paper_10706631_v12_n4_p797_Ferro |
network_acronym_str |
BDUBAFCEN |
repository_id_str |
1896 |
network_name_str |
Biblioteca Digital (UBA-FCEN) |
spelling |
Spatial stability of similarity solutions for viscous flows in channels with porous wallsFerro, S.Gnavi, G.channel flowmathematical analysisNavier-Stokes equationsporous mediumviscous flowThe spatial stability of similarity solutions for an incompressible fluid flowing along a channel with porous walls and driven by constant uniform suction along the walls is analyzed. This work extends the results of Durlofsky and Brady [Phys. Fluids 27, 1068 (1984)] to a wider class of similarity solutions, and examines the spatial stability of small amplitude perturbations of arbitrary shape, generated at the entrance of the channel. It is found that antisymmetric perturbations are the best candidates to destabilize the solutions. Temporally stable asymmetric solutions with flow reversal presented by Zaturska, Drazin, and Banks [Fluid Dyn. Res. 4, 151 (1988)] are found to be spatially unstable. The perturbed similarity solutions are also compared with fully bidimensional ones obtained with a finite difference code. The results confirm the importance of similarity solutions and the validity of the stability analysis in a region whose distance to the center of the channel is more than three times the channel half-width. © 2000 American Institute of Physics.Fil:Ferro, S. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina.Fil:Gnavi, G. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina.2000info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfhttp://hdl.handle.net/20.500.12110/paper_10706631_v12_n4_p797_FerroPhys Fluids 2000;12(4):797-802reponame:Biblioteca Digital (UBA-FCEN)instname:Universidad Nacional de Buenos Aires. Facultad de Ciencias Exactas y Naturalesinstacron:UBA-FCENenginfo:eu-repo/semantics/openAccesshttp://creativecommons.org/licenses/by/2.5/ar2025-09-29T13:43:06Zpaperaa:paper_10706631_v12_n4_p797_FerroInstitucionalhttps://digital.bl.fcen.uba.ar/Universidad públicaNo correspondehttps://digital.bl.fcen.uba.ar/cgi-bin/oaiserver.cgiana@bl.fcen.uba.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:18962025-09-29 13:43:07.493Biblioteca Digital (UBA-FCEN) - Universidad Nacional de Buenos Aires. Facultad de Ciencias Exactas y Naturalesfalse |
dc.title.none.fl_str_mv |
Spatial stability of similarity solutions for viscous flows in channels with porous walls |
title |
Spatial stability of similarity solutions for viscous flows in channels with porous walls |
spellingShingle |
Spatial stability of similarity solutions for viscous flows in channels with porous walls Ferro, S. channel flow mathematical analysis Navier-Stokes equations porous medium viscous flow |
title_short |
Spatial stability of similarity solutions for viscous flows in channels with porous walls |
title_full |
Spatial stability of similarity solutions for viscous flows in channels with porous walls |
title_fullStr |
Spatial stability of similarity solutions for viscous flows in channels with porous walls |
title_full_unstemmed |
Spatial stability of similarity solutions for viscous flows in channels with porous walls |
title_sort |
Spatial stability of similarity solutions for viscous flows in channels with porous walls |
dc.creator.none.fl_str_mv |
Ferro, S. Gnavi, G. |
author |
Ferro, S. |
author_facet |
Ferro, S. Gnavi, G. |
author_role |
author |
author2 |
Gnavi, G. |
author2_role |
author |
dc.subject.none.fl_str_mv |
channel flow mathematical analysis Navier-Stokes equations porous medium viscous flow |
topic |
channel flow mathematical analysis Navier-Stokes equations porous medium viscous flow |
dc.description.none.fl_txt_mv |
The spatial stability of similarity solutions for an incompressible fluid flowing along a channel with porous walls and driven by constant uniform suction along the walls is analyzed. This work extends the results of Durlofsky and Brady [Phys. Fluids 27, 1068 (1984)] to a wider class of similarity solutions, and examines the spatial stability of small amplitude perturbations of arbitrary shape, generated at the entrance of the channel. It is found that antisymmetric perturbations are the best candidates to destabilize the solutions. Temporally stable asymmetric solutions with flow reversal presented by Zaturska, Drazin, and Banks [Fluid Dyn. Res. 4, 151 (1988)] are found to be spatially unstable. The perturbed similarity solutions are also compared with fully bidimensional ones obtained with a finite difference code. The results confirm the importance of similarity solutions and the validity of the stability analysis in a region whose distance to the center of the channel is more than three times the channel half-width. © 2000 American Institute of Physics. Fil:Ferro, S. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina. Fil:Gnavi, G. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina. |
description |
The spatial stability of similarity solutions for an incompressible fluid flowing along a channel with porous walls and driven by constant uniform suction along the walls is analyzed. This work extends the results of Durlofsky and Brady [Phys. Fluids 27, 1068 (1984)] to a wider class of similarity solutions, and examines the spatial stability of small amplitude perturbations of arbitrary shape, generated at the entrance of the channel. It is found that antisymmetric perturbations are the best candidates to destabilize the solutions. Temporally stable asymmetric solutions with flow reversal presented by Zaturska, Drazin, and Banks [Fluid Dyn. Res. 4, 151 (1988)] are found to be spatially unstable. The perturbed similarity solutions are also compared with fully bidimensional ones obtained with a finite difference code. The results confirm the importance of similarity solutions and the validity of the stability analysis in a region whose distance to the center of the channel is more than three times the channel half-width. © 2000 American Institute of Physics. |
publishDate |
2000 |
dc.date.none.fl_str_mv |
2000 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/20.500.12110/paper_10706631_v12_n4_p797_Ferro |
url |
http://hdl.handle.net/20.500.12110/paper_10706631_v12_n4_p797_Ferro |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess http://creativecommons.org/licenses/by/2.5/ar |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
http://creativecommons.org/licenses/by/2.5/ar |
dc.format.none.fl_str_mv |
application/pdf |
dc.source.none.fl_str_mv |
Phys Fluids 2000;12(4):797-802 reponame:Biblioteca Digital (UBA-FCEN) instname:Universidad Nacional de Buenos Aires. Facultad de Ciencias Exactas y Naturales instacron:UBA-FCEN |
reponame_str |
Biblioteca Digital (UBA-FCEN) |
collection |
Biblioteca Digital (UBA-FCEN) |
instname_str |
Universidad Nacional de Buenos Aires. Facultad de Ciencias Exactas y Naturales |
instacron_str |
UBA-FCEN |
institution |
UBA-FCEN |
repository.name.fl_str_mv |
Biblioteca Digital (UBA-FCEN) - Universidad Nacional de Buenos Aires. Facultad de Ciencias Exactas y Naturales |
repository.mail.fl_str_mv |
ana@bl.fcen.uba.ar |
_version_ |
1844618739796934656 |
score |
13.070432 |