Spatial stability of similarity solutions for viscous flows in channels with porous walls

Autores
Ferro, S.; Gnavi, G.
Año de publicación
2000
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
The spatial stability of similarity solutions for an incompressible fluid flowing along a channel with porous walls and driven by constant uniform suction along the walls is analyzed. This work extends the results of Durlofsky and Brady [Phys. Fluids 27, 1068 (1984)] to a wider class of similarity solutions, and examines the spatial stability of small amplitude perturbations of arbitrary shape, generated at the entrance of the channel. It is found that antisymmetric perturbations are the best candidates to destabilize the solutions. Temporally stable asymmetric solutions with flow reversal presented by Zaturska, Drazin, and Banks [Fluid Dyn. Res. 4, 151 (1988)] are found to be spatially unstable. The perturbed similarity solutions are also compared with fully bidimensional ones obtained with a finite difference code. The results confirm the importance of similarity solutions and the validity of the stability analysis in a region whose distance to the center of the channel is more than three times the channel half-width. © 2000 American Institute of Physics.
Fil:Ferro, S. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina.
Fil:Gnavi, G. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina.
Fuente
Phys Fluids 2000;12(4):797-802
Materia
channel flow
mathematical analysis
Navier-Stokes equations
porous medium
viscous flow
Nivel de accesibilidad
acceso abierto
Condiciones de uso
http://creativecommons.org/licenses/by/2.5/ar
Repositorio
Biblioteca Digital (UBA-FCEN)
Institución
Universidad Nacional de Buenos Aires. Facultad de Ciencias Exactas y Naturales
OAI Identificador
paperaa:paper_10706631_v12_n4_p797_Ferro

id BDUBAFCEN_9822fa76abb9965e081ba400afb1cbb1
oai_identifier_str paperaa:paper_10706631_v12_n4_p797_Ferro
network_acronym_str BDUBAFCEN
repository_id_str 1896
network_name_str Biblioteca Digital (UBA-FCEN)
spelling Spatial stability of similarity solutions for viscous flows in channels with porous wallsFerro, S.Gnavi, G.channel flowmathematical analysisNavier-Stokes equationsporous mediumviscous flowThe spatial stability of similarity solutions for an incompressible fluid flowing along a channel with porous walls and driven by constant uniform suction along the walls is analyzed. This work extends the results of Durlofsky and Brady [Phys. Fluids 27, 1068 (1984)] to a wider class of similarity solutions, and examines the spatial stability of small amplitude perturbations of arbitrary shape, generated at the entrance of the channel. It is found that antisymmetric perturbations are the best candidates to destabilize the solutions. Temporally stable asymmetric solutions with flow reversal presented by Zaturska, Drazin, and Banks [Fluid Dyn. Res. 4, 151 (1988)] are found to be spatially unstable. The perturbed similarity solutions are also compared with fully bidimensional ones obtained with a finite difference code. The results confirm the importance of similarity solutions and the validity of the stability analysis in a region whose distance to the center of the channel is more than three times the channel half-width. © 2000 American Institute of Physics.Fil:Ferro, S. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina.Fil:Gnavi, G. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina.2000info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfhttp://hdl.handle.net/20.500.12110/paper_10706631_v12_n4_p797_FerroPhys Fluids 2000;12(4):797-802reponame:Biblioteca Digital (UBA-FCEN)instname:Universidad Nacional de Buenos Aires. Facultad de Ciencias Exactas y Naturalesinstacron:UBA-FCENenginfo:eu-repo/semantics/openAccesshttp://creativecommons.org/licenses/by/2.5/ar2025-09-29T13:43:06Zpaperaa:paper_10706631_v12_n4_p797_FerroInstitucionalhttps://digital.bl.fcen.uba.ar/Universidad públicaNo correspondehttps://digital.bl.fcen.uba.ar/cgi-bin/oaiserver.cgiana@bl.fcen.uba.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:18962025-09-29 13:43:07.493Biblioteca Digital (UBA-FCEN) - Universidad Nacional de Buenos Aires. Facultad de Ciencias Exactas y Naturalesfalse
dc.title.none.fl_str_mv Spatial stability of similarity solutions for viscous flows in channels with porous walls
title Spatial stability of similarity solutions for viscous flows in channels with porous walls
spellingShingle Spatial stability of similarity solutions for viscous flows in channels with porous walls
Ferro, S.
channel flow
mathematical analysis
Navier-Stokes equations
porous medium
viscous flow
title_short Spatial stability of similarity solutions for viscous flows in channels with porous walls
title_full Spatial stability of similarity solutions for viscous flows in channels with porous walls
title_fullStr Spatial stability of similarity solutions for viscous flows in channels with porous walls
title_full_unstemmed Spatial stability of similarity solutions for viscous flows in channels with porous walls
title_sort Spatial stability of similarity solutions for viscous flows in channels with porous walls
dc.creator.none.fl_str_mv Ferro, S.
Gnavi, G.
author Ferro, S.
author_facet Ferro, S.
Gnavi, G.
author_role author
author2 Gnavi, G.
author2_role author
dc.subject.none.fl_str_mv channel flow
mathematical analysis
Navier-Stokes equations
porous medium
viscous flow
topic channel flow
mathematical analysis
Navier-Stokes equations
porous medium
viscous flow
dc.description.none.fl_txt_mv The spatial stability of similarity solutions for an incompressible fluid flowing along a channel with porous walls and driven by constant uniform suction along the walls is analyzed. This work extends the results of Durlofsky and Brady [Phys. Fluids 27, 1068 (1984)] to a wider class of similarity solutions, and examines the spatial stability of small amplitude perturbations of arbitrary shape, generated at the entrance of the channel. It is found that antisymmetric perturbations are the best candidates to destabilize the solutions. Temporally stable asymmetric solutions with flow reversal presented by Zaturska, Drazin, and Banks [Fluid Dyn. Res. 4, 151 (1988)] are found to be spatially unstable. The perturbed similarity solutions are also compared with fully bidimensional ones obtained with a finite difference code. The results confirm the importance of similarity solutions and the validity of the stability analysis in a region whose distance to the center of the channel is more than three times the channel half-width. © 2000 American Institute of Physics.
Fil:Ferro, S. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina.
Fil:Gnavi, G. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina.
description The spatial stability of similarity solutions for an incompressible fluid flowing along a channel with porous walls and driven by constant uniform suction along the walls is analyzed. This work extends the results of Durlofsky and Brady [Phys. Fluids 27, 1068 (1984)] to a wider class of similarity solutions, and examines the spatial stability of small amplitude perturbations of arbitrary shape, generated at the entrance of the channel. It is found that antisymmetric perturbations are the best candidates to destabilize the solutions. Temporally stable asymmetric solutions with flow reversal presented by Zaturska, Drazin, and Banks [Fluid Dyn. Res. 4, 151 (1988)] are found to be spatially unstable. The perturbed similarity solutions are also compared with fully bidimensional ones obtained with a finite difference code. The results confirm the importance of similarity solutions and the validity of the stability analysis in a region whose distance to the center of the channel is more than three times the channel half-width. © 2000 American Institute of Physics.
publishDate 2000
dc.date.none.fl_str_mv 2000
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/20.500.12110/paper_10706631_v12_n4_p797_Ferro
url http://hdl.handle.net/20.500.12110/paper_10706631_v12_n4_p797_Ferro
dc.language.none.fl_str_mv eng
language eng
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
http://creativecommons.org/licenses/by/2.5/ar
eu_rights_str_mv openAccess
rights_invalid_str_mv http://creativecommons.org/licenses/by/2.5/ar
dc.format.none.fl_str_mv application/pdf
dc.source.none.fl_str_mv Phys Fluids 2000;12(4):797-802
reponame:Biblioteca Digital (UBA-FCEN)
instname:Universidad Nacional de Buenos Aires. Facultad de Ciencias Exactas y Naturales
instacron:UBA-FCEN
reponame_str Biblioteca Digital (UBA-FCEN)
collection Biblioteca Digital (UBA-FCEN)
instname_str Universidad Nacional de Buenos Aires. Facultad de Ciencias Exactas y Naturales
instacron_str UBA-FCEN
institution UBA-FCEN
repository.name.fl_str_mv Biblioteca Digital (UBA-FCEN) - Universidad Nacional de Buenos Aires. Facultad de Ciencias Exactas y Naturales
repository.mail.fl_str_mv ana@bl.fcen.uba.ar
_version_ 1844618739796934656
score 13.070432