A dependent Bayesian Dirichlet process model for source apportionment of particle number size distribution
- Autores
- Baerenbold, Oliver; Meis, Melanie; Martínez Hernández, Israel; Euán, Carolina; Burr, Wesley S.; Tremper, Anja; Fuller, Gary; Pirani, Monica; Blangiardo, Marta
- Año de publicación
- 2022
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- The relationship between particle exposure and health risks has been well established in recent years. Particulate matter (PM) is made up of different components coming from several sources, which might have different level of toxicity. Hence, identifying these sources is an important task in order to implement effective policies to improve air quality and population health. The problem of identifying sources of particulate pollution has already been studied in the literature. However, current methods require an a priori specification of the number of sources and do not include information on covariates in the source allocations. Here, we propose a novel Bayesian nonparametric approach to overcome these limitations. In particular, we model source contribution using a Dirichlet process as a prior for source profiles, which allows us to estimate the number of components that contribute to particle concentration rather than fixing this number beforehand. To better characterize them we also include meteorological variables (wind speed and direction) as covariates within the allocation process via a flexible Gaussian kernel. We apply the model to apportion particle number size distribution measured near London Gatwick Airport (UK) in 2019. When analyzing this data, we are able to identify the most common PM sources, as well as new sources that have not been identified with the commonly used methods.
Fil: Baerenbold, Oliver. Imperial College London; Reino Unido
Fil: Meis, Melanie. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Centro de Investigaciones del Mar y la Atmósfera. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Centro de Investigaciones del Mar y la Atmósfera; Argentina
Fil: Martínez Hernández, Israel. Lancaster University; Reino Unido
Fil: Euán, Carolina. Lancaster University; Reino Unido
Fil: Burr, Wesley S.. Trent University (trent University);
Fil: Tremper, Anja. Imperial College London; Reino Unido
Fil: Fuller, Gary. Imperial College London; Reino Unido
Fil: Pirani, Monica. Imperial College London; Reino Unido
Fil: Blangiardo, Marta. Imperial College London; Reino Unido - Materia
-
BAYESIAN MODELING
DEPENDENT DIRICHLET PROCESS
PARTICLE CONCENTRATIONS
SOURCE APPORTIONMENT - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/213061
Ver los metadatos del registro completo
id |
CONICETDig_8c04c7181dea5e4c9efa49c6e11409dd |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/213061 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
A dependent Bayesian Dirichlet process model for source apportionment of particle number size distributionBaerenbold, OliverMeis, MelanieMartínez Hernández, IsraelEuán, CarolinaBurr, Wesley S.Tremper, AnjaFuller, GaryPirani, MonicaBlangiardo, MartaBAYESIAN MODELINGDEPENDENT DIRICHLET PROCESSPARTICLE CONCENTRATIONSSOURCE APPORTIONMENThttps://purl.org/becyt/ford/1.5https://purl.org/becyt/ford/1The relationship between particle exposure and health risks has been well established in recent years. Particulate matter (PM) is made up of different components coming from several sources, which might have different level of toxicity. Hence, identifying these sources is an important task in order to implement effective policies to improve air quality and population health. The problem of identifying sources of particulate pollution has already been studied in the literature. However, current methods require an a priori specification of the number of sources and do not include information on covariates in the source allocations. Here, we propose a novel Bayesian nonparametric approach to overcome these limitations. In particular, we model source contribution using a Dirichlet process as a prior for source profiles, which allows us to estimate the number of components that contribute to particle concentration rather than fixing this number beforehand. To better characterize them we also include meteorological variables (wind speed and direction) as covariates within the allocation process via a flexible Gaussian kernel. We apply the model to apportion particle number size distribution measured near London Gatwick Airport (UK) in 2019. When analyzing this data, we are able to identify the most common PM sources, as well as new sources that have not been identified with the commonly used methods.Fil: Baerenbold, Oliver. Imperial College London; Reino UnidoFil: Meis, Melanie. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Centro de Investigaciones del Mar y la Atmósfera. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Centro de Investigaciones del Mar y la Atmósfera; ArgentinaFil: Martínez Hernández, Israel. Lancaster University; Reino UnidoFil: Euán, Carolina. Lancaster University; Reino UnidoFil: Burr, Wesley S.. Trent University (trent University);Fil: Tremper, Anja. Imperial College London; Reino UnidoFil: Fuller, Gary. Imperial College London; Reino UnidoFil: Pirani, Monica. Imperial College London; Reino UnidoFil: Blangiardo, Marta. Imperial College London; Reino UnidoJohn Wiley & Sons Ltd2022-09info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/213061Baerenbold, Oliver; Meis, Melanie; Martínez Hernández, Israel; Euán, Carolina; Burr, Wesley S.; et al.; A dependent Bayesian Dirichlet process model for source apportionment of particle number size distribution; John Wiley & Sons Ltd; Environmetrics; 34; 1; 9-2022; 1-191180-4009CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/https://onlinelibrary.wiley.com/doi/10.1002/env.2763info:eu-repo/semantics/altIdentifier/doi/10.1002/env.2763info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-10T13:16:25Zoai:ri.conicet.gov.ar:11336/213061instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-10 13:16:25.454CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
A dependent Bayesian Dirichlet process model for source apportionment of particle number size distribution |
title |
A dependent Bayesian Dirichlet process model for source apportionment of particle number size distribution |
spellingShingle |
A dependent Bayesian Dirichlet process model for source apportionment of particle number size distribution Baerenbold, Oliver BAYESIAN MODELING DEPENDENT DIRICHLET PROCESS PARTICLE CONCENTRATIONS SOURCE APPORTIONMENT |
title_short |
A dependent Bayesian Dirichlet process model for source apportionment of particle number size distribution |
title_full |
A dependent Bayesian Dirichlet process model for source apportionment of particle number size distribution |
title_fullStr |
A dependent Bayesian Dirichlet process model for source apportionment of particle number size distribution |
title_full_unstemmed |
A dependent Bayesian Dirichlet process model for source apportionment of particle number size distribution |
title_sort |
A dependent Bayesian Dirichlet process model for source apportionment of particle number size distribution |
dc.creator.none.fl_str_mv |
Baerenbold, Oliver Meis, Melanie Martínez Hernández, Israel Euán, Carolina Burr, Wesley S. Tremper, Anja Fuller, Gary Pirani, Monica Blangiardo, Marta |
author |
Baerenbold, Oliver |
author_facet |
Baerenbold, Oliver Meis, Melanie Martínez Hernández, Israel Euán, Carolina Burr, Wesley S. Tremper, Anja Fuller, Gary Pirani, Monica Blangiardo, Marta |
author_role |
author |
author2 |
Meis, Melanie Martínez Hernández, Israel Euán, Carolina Burr, Wesley S. Tremper, Anja Fuller, Gary Pirani, Monica Blangiardo, Marta |
author2_role |
author author author author author author author author |
dc.subject.none.fl_str_mv |
BAYESIAN MODELING DEPENDENT DIRICHLET PROCESS PARTICLE CONCENTRATIONS SOURCE APPORTIONMENT |
topic |
BAYESIAN MODELING DEPENDENT DIRICHLET PROCESS PARTICLE CONCENTRATIONS SOURCE APPORTIONMENT |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.5 https://purl.org/becyt/ford/1 |
dc.description.none.fl_txt_mv |
The relationship between particle exposure and health risks has been well established in recent years. Particulate matter (PM) is made up of different components coming from several sources, which might have different level of toxicity. Hence, identifying these sources is an important task in order to implement effective policies to improve air quality and population health. The problem of identifying sources of particulate pollution has already been studied in the literature. However, current methods require an a priori specification of the number of sources and do not include information on covariates in the source allocations. Here, we propose a novel Bayesian nonparametric approach to overcome these limitations. In particular, we model source contribution using a Dirichlet process as a prior for source profiles, which allows us to estimate the number of components that contribute to particle concentration rather than fixing this number beforehand. To better characterize them we also include meteorological variables (wind speed and direction) as covariates within the allocation process via a flexible Gaussian kernel. We apply the model to apportion particle number size distribution measured near London Gatwick Airport (UK) in 2019. When analyzing this data, we are able to identify the most common PM sources, as well as new sources that have not been identified with the commonly used methods. Fil: Baerenbold, Oliver. Imperial College London; Reino Unido Fil: Meis, Melanie. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Centro de Investigaciones del Mar y la Atmósfera. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Centro de Investigaciones del Mar y la Atmósfera; Argentina Fil: Martínez Hernández, Israel. Lancaster University; Reino Unido Fil: Euán, Carolina. Lancaster University; Reino Unido Fil: Burr, Wesley S.. Trent University (trent University); Fil: Tremper, Anja. Imperial College London; Reino Unido Fil: Fuller, Gary. Imperial College London; Reino Unido Fil: Pirani, Monica. Imperial College London; Reino Unido Fil: Blangiardo, Marta. Imperial College London; Reino Unido |
description |
The relationship between particle exposure and health risks has been well established in recent years. Particulate matter (PM) is made up of different components coming from several sources, which might have different level of toxicity. Hence, identifying these sources is an important task in order to implement effective policies to improve air quality and population health. The problem of identifying sources of particulate pollution has already been studied in the literature. However, current methods require an a priori specification of the number of sources and do not include information on covariates in the source allocations. Here, we propose a novel Bayesian nonparametric approach to overcome these limitations. In particular, we model source contribution using a Dirichlet process as a prior for source profiles, which allows us to estimate the number of components that contribute to particle concentration rather than fixing this number beforehand. To better characterize them we also include meteorological variables (wind speed and direction) as covariates within the allocation process via a flexible Gaussian kernel. We apply the model to apportion particle number size distribution measured near London Gatwick Airport (UK) in 2019. When analyzing this data, we are able to identify the most common PM sources, as well as new sources that have not been identified with the commonly used methods. |
publishDate |
2022 |
dc.date.none.fl_str_mv |
2022-09 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/213061 Baerenbold, Oliver; Meis, Melanie; Martínez Hernández, Israel; Euán, Carolina; Burr, Wesley S.; et al.; A dependent Bayesian Dirichlet process model for source apportionment of particle number size distribution; John Wiley & Sons Ltd; Environmetrics; 34; 1; 9-2022; 1-19 1180-4009 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/213061 |
identifier_str_mv |
Baerenbold, Oliver; Meis, Melanie; Martínez Hernández, Israel; Euán, Carolina; Burr, Wesley S.; et al.; A dependent Bayesian Dirichlet process model for source apportionment of particle number size distribution; John Wiley & Sons Ltd; Environmetrics; 34; 1; 9-2022; 1-19 1180-4009 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/url/https://onlinelibrary.wiley.com/doi/10.1002/env.2763 info:eu-repo/semantics/altIdentifier/doi/10.1002/env.2763 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
John Wiley & Sons Ltd |
publisher.none.fl_str_mv |
John Wiley & Sons Ltd |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1842980893411508224 |
score |
12.993085 |