Spatial distribution, patterns and source contributions of POPs in the atmosphere of Great Mendoza using the WRF/CALMET/CALPUFF modelling system

Autores
Ruggeri, María Florencia; Lana, Nerina Belén; Altamirano, Jorgelina Cecilia; Puliafito, Salvador Enrique
Año de publicación
2020
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
Global monitoring of Persistent Organic Pollutants (POPs) has allowed the knowledge of levels and distribution around the world as well as the understanding of its transport through the atmosphere. However, there are still some gaps in this regard, especially in some locations, as the case of Great Mendoza, a medium-sized urban area located in the center-west of Argentina. In this work, the WRF/CALMET/CALPUFF modeling system was used to estimate airborne levels of four families of POPs (PCBs, PBDEs, DDTs and HCB) in the study area. The model was validated from measured data obtained from eleven sites using passive air samplers with polyurethane foam disks (PUFs), subsequently analyzed by GC-ECNI/MS. Considering both sets of data, measured and simulated airborne concentrations, five statistical performance metrics were calculated for each family of POP [Mean bias error, (MBE), Fractional Bias (FB), Normalized Mean Square Error (NMSE), Factor of two (Fa2) and Pearson correlation coefficient (r)]. Results exhibited a good agreement between modeled and measured data, showing that WRF/CALMET/CALPUFF modeling system predicts POPs airborne concentrations with reasonable accuracy at a local scale. Model output was used to examine the relative source contribution to ground-level concentrations and to assess the spatial variability of the studied POPs in the study area. Source apportionment showed the prevalence of emissions from open burning of municipal solid waste (ranging from 9% to 90%) on the simulated atmospheric concentrations. HCB presented the lowest mean contribution from this activity (37%) but the highest variability (SD = 20%), followed by PCBs (69 ± 9%), and PBDEs (84 ± 4%). The spatial pattern obtained from simulations exhibited that both, lowest and highest levels predicted by the model, occurred in areas where no samples were taken, suggesting that the real gradient in the POPs air concentrations would be much greater than those reflected by measured data. This work highlights the usefulness of the implementation of an atmospheric dispersion model, not only in the study of air quality and exposure levels but also as a tool for the proper design of monitoring networks, taking into account the time and cost that sampling campaigns take, and the conclusions that are intended to be made from the analysis of the obtained data.
Fil: Ruggeri, María Florencia. Universidad Tecnológica Nacional; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mendoza. Instituto Argentino de Nivología, Glaciología y Ciencias Ambientales. Provincia de Mendoza. Instituto Argentino de Nivología, Glaciología y Ciencias Ambientales. Universidad Nacional de Cuyo. Instituto Argentino de Nivología, Glaciología y Ciencias Ambientales; Argentina. Universidad Técnica Federico Santa María; Chile
Fil: Lana, Nerina Belén. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mendoza. Instituto Argentino de Nivología, Glaciología y Ciencias Ambientales. Provincia de Mendoza. Instituto Argentino de Nivología, Glaciología y Ciencias Ambientales. Universidad Nacional de Cuyo. Instituto Argentino de Nivología, Glaciología y Ciencias Ambientales; Argentina. Universidad Nacional de Cuyo. Facultad de Ciencias Exactas y Naturales; Argentina
Fil: Altamirano, Jorgelina Cecilia. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mendoza. Instituto Argentino de Nivología, Glaciología y Ciencias Ambientales. Provincia de Mendoza. Instituto Argentino de Nivología, Glaciología y Ciencias Ambientales. Universidad Nacional de Cuyo. Instituto Argentino de Nivología, Glaciología y Ciencias Ambientales; Argentina. Universidad Nacional de Cuyo. Facultad de Ciencias Exactas y Naturales; Argentina
Fil: Puliafito, Salvador Enrique. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mendoza. Instituto Argentino de Nivología, Glaciología y Ciencias Ambientales. Provincia de Mendoza. Instituto Argentino de Nivología, Glaciología y Ciencias Ambientales. Universidad Nacional de Cuyo. Instituto Argentino de Nivología, Glaciología y Ciencias Ambientales; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mendoza; Argentina
Materia
ATMOSPHERIC DISPERSION MODEL
CALPUFF
POPS
SOURCE APPORTIONMENT
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by-nc-nd/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/147038

id CONICETDig_9204a51ea67205eb353c4b81de52b977
oai_identifier_str oai:ri.conicet.gov.ar:11336/147038
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling Spatial distribution, patterns and source contributions of POPs in the atmosphere of Great Mendoza using the WRF/CALMET/CALPUFF modelling systemRuggeri, María FlorenciaLana, Nerina BelénAltamirano, Jorgelina CeciliaPuliafito, Salvador EnriqueATMOSPHERIC DISPERSION MODELCALPUFFPOPSSOURCE APPORTIONMENThttps://purl.org/becyt/ford/1.5https://purl.org/becyt/ford/1Global monitoring of Persistent Organic Pollutants (POPs) has allowed the knowledge of levels and distribution around the world as well as the understanding of its transport through the atmosphere. However, there are still some gaps in this regard, especially in some locations, as the case of Great Mendoza, a medium-sized urban area located in the center-west of Argentina. In this work, the WRF/CALMET/CALPUFF modeling system was used to estimate airborne levels of four families of POPs (PCBs, PBDEs, DDTs and HCB) in the study area. The model was validated from measured data obtained from eleven sites using passive air samplers with polyurethane foam disks (PUFs), subsequently analyzed by GC-ECNI/MS. Considering both sets of data, measured and simulated airborne concentrations, five statistical performance metrics were calculated for each family of POP [Mean bias error, (MBE), Fractional Bias (FB), Normalized Mean Square Error (NMSE), Factor of two (Fa2) and Pearson correlation coefficient (r)]. Results exhibited a good agreement between modeled and measured data, showing that WRF/CALMET/CALPUFF modeling system predicts POPs airborne concentrations with reasonable accuracy at a local scale. Model output was used to examine the relative source contribution to ground-level concentrations and to assess the spatial variability of the studied POPs in the study area. Source apportionment showed the prevalence of emissions from open burning of municipal solid waste (ranging from 9% to 90%) on the simulated atmospheric concentrations. HCB presented the lowest mean contribution from this activity (37%) but the highest variability (SD = 20%), followed by PCBs (69 ± 9%), and PBDEs (84 ± 4%). The spatial pattern obtained from simulations exhibited that both, lowest and highest levels predicted by the model, occurred in areas where no samples were taken, suggesting that the real gradient in the POPs air concentrations would be much greater than those reflected by measured data. This work highlights the usefulness of the implementation of an atmospheric dispersion model, not only in the study of air quality and exposure levels but also as a tool for the proper design of monitoring networks, taking into account the time and cost that sampling campaigns take, and the conclusions that are intended to be made from the analysis of the obtained data.Fil: Ruggeri, María Florencia. Universidad Tecnológica Nacional; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mendoza. Instituto Argentino de Nivología, Glaciología y Ciencias Ambientales. Provincia de Mendoza. Instituto Argentino de Nivología, Glaciología y Ciencias Ambientales. Universidad Nacional de Cuyo. Instituto Argentino de Nivología, Glaciología y Ciencias Ambientales; Argentina. Universidad Técnica Federico Santa María; ChileFil: Lana, Nerina Belén. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mendoza. Instituto Argentino de Nivología, Glaciología y Ciencias Ambientales. Provincia de Mendoza. Instituto Argentino de Nivología, Glaciología y Ciencias Ambientales. Universidad Nacional de Cuyo. Instituto Argentino de Nivología, Glaciología y Ciencias Ambientales; Argentina. Universidad Nacional de Cuyo. Facultad de Ciencias Exactas y Naturales; ArgentinaFil: Altamirano, Jorgelina Cecilia. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mendoza. Instituto Argentino de Nivología, Glaciología y Ciencias Ambientales. Provincia de Mendoza. Instituto Argentino de Nivología, Glaciología y Ciencias Ambientales. Universidad Nacional de Cuyo. Instituto Argentino de Nivología, Glaciología y Ciencias Ambientales; Argentina. Universidad Nacional de Cuyo. Facultad de Ciencias Exactas y Naturales; ArgentinaFil: Puliafito, Salvador Enrique. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mendoza. Instituto Argentino de Nivología, Glaciología y Ciencias Ambientales. Provincia de Mendoza. Instituto Argentino de Nivología, Glaciología y Ciencias Ambientales. Universidad Nacional de Cuyo. Instituto Argentino de Nivología, Glaciología y Ciencias Ambientales; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mendoza; ArgentinaKeAi Communications Co.2020-01info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/147038Ruggeri, María Florencia; Lana, Nerina Belén; Altamirano, Jorgelina Cecilia; Puliafito, Salvador Enrique; Spatial distribution, patterns and source contributions of POPs in the atmosphere of Great Mendoza using the WRF/CALMET/CALPUFF modelling system; KeAi Communications Co.; Emerging Contaminants; 6; 1-2020; 103-1132405-6650CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/https://www.sciencedirect.com/science/article/pii/S2405665020300068info:eu-repo/semantics/altIdentifier/doi/10.1016/j.emcon.2020.02.002info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-nd/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-03T09:48:47Zoai:ri.conicet.gov.ar:11336/147038instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-03 09:48:47.902CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv Spatial distribution, patterns and source contributions of POPs in the atmosphere of Great Mendoza using the WRF/CALMET/CALPUFF modelling system
title Spatial distribution, patterns and source contributions of POPs in the atmosphere of Great Mendoza using the WRF/CALMET/CALPUFF modelling system
spellingShingle Spatial distribution, patterns and source contributions of POPs in the atmosphere of Great Mendoza using the WRF/CALMET/CALPUFF modelling system
Ruggeri, María Florencia
ATMOSPHERIC DISPERSION MODEL
CALPUFF
POPS
SOURCE APPORTIONMENT
title_short Spatial distribution, patterns and source contributions of POPs in the atmosphere of Great Mendoza using the WRF/CALMET/CALPUFF modelling system
title_full Spatial distribution, patterns and source contributions of POPs in the atmosphere of Great Mendoza using the WRF/CALMET/CALPUFF modelling system
title_fullStr Spatial distribution, patterns and source contributions of POPs in the atmosphere of Great Mendoza using the WRF/CALMET/CALPUFF modelling system
title_full_unstemmed Spatial distribution, patterns and source contributions of POPs in the atmosphere of Great Mendoza using the WRF/CALMET/CALPUFF modelling system
title_sort Spatial distribution, patterns and source contributions of POPs in the atmosphere of Great Mendoza using the WRF/CALMET/CALPUFF modelling system
dc.creator.none.fl_str_mv Ruggeri, María Florencia
Lana, Nerina Belén
Altamirano, Jorgelina Cecilia
Puliafito, Salvador Enrique
author Ruggeri, María Florencia
author_facet Ruggeri, María Florencia
Lana, Nerina Belén
Altamirano, Jorgelina Cecilia
Puliafito, Salvador Enrique
author_role author
author2 Lana, Nerina Belén
Altamirano, Jorgelina Cecilia
Puliafito, Salvador Enrique
author2_role author
author
author
dc.subject.none.fl_str_mv ATMOSPHERIC DISPERSION MODEL
CALPUFF
POPS
SOURCE APPORTIONMENT
topic ATMOSPHERIC DISPERSION MODEL
CALPUFF
POPS
SOURCE APPORTIONMENT
purl_subject.fl_str_mv https://purl.org/becyt/ford/1.5
https://purl.org/becyt/ford/1
dc.description.none.fl_txt_mv Global monitoring of Persistent Organic Pollutants (POPs) has allowed the knowledge of levels and distribution around the world as well as the understanding of its transport through the atmosphere. However, there are still some gaps in this regard, especially in some locations, as the case of Great Mendoza, a medium-sized urban area located in the center-west of Argentina. In this work, the WRF/CALMET/CALPUFF modeling system was used to estimate airborne levels of four families of POPs (PCBs, PBDEs, DDTs and HCB) in the study area. The model was validated from measured data obtained from eleven sites using passive air samplers with polyurethane foam disks (PUFs), subsequently analyzed by GC-ECNI/MS. Considering both sets of data, measured and simulated airborne concentrations, five statistical performance metrics were calculated for each family of POP [Mean bias error, (MBE), Fractional Bias (FB), Normalized Mean Square Error (NMSE), Factor of two (Fa2) and Pearson correlation coefficient (r)]. Results exhibited a good agreement between modeled and measured data, showing that WRF/CALMET/CALPUFF modeling system predicts POPs airborne concentrations with reasonable accuracy at a local scale. Model output was used to examine the relative source contribution to ground-level concentrations and to assess the spatial variability of the studied POPs in the study area. Source apportionment showed the prevalence of emissions from open burning of municipal solid waste (ranging from 9% to 90%) on the simulated atmospheric concentrations. HCB presented the lowest mean contribution from this activity (37%) but the highest variability (SD = 20%), followed by PCBs (69 ± 9%), and PBDEs (84 ± 4%). The spatial pattern obtained from simulations exhibited that both, lowest and highest levels predicted by the model, occurred in areas where no samples were taken, suggesting that the real gradient in the POPs air concentrations would be much greater than those reflected by measured data. This work highlights the usefulness of the implementation of an atmospheric dispersion model, not only in the study of air quality and exposure levels but also as a tool for the proper design of monitoring networks, taking into account the time and cost that sampling campaigns take, and the conclusions that are intended to be made from the analysis of the obtained data.
Fil: Ruggeri, María Florencia. Universidad Tecnológica Nacional; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mendoza. Instituto Argentino de Nivología, Glaciología y Ciencias Ambientales. Provincia de Mendoza. Instituto Argentino de Nivología, Glaciología y Ciencias Ambientales. Universidad Nacional de Cuyo. Instituto Argentino de Nivología, Glaciología y Ciencias Ambientales; Argentina. Universidad Técnica Federico Santa María; Chile
Fil: Lana, Nerina Belén. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mendoza. Instituto Argentino de Nivología, Glaciología y Ciencias Ambientales. Provincia de Mendoza. Instituto Argentino de Nivología, Glaciología y Ciencias Ambientales. Universidad Nacional de Cuyo. Instituto Argentino de Nivología, Glaciología y Ciencias Ambientales; Argentina. Universidad Nacional de Cuyo. Facultad de Ciencias Exactas y Naturales; Argentina
Fil: Altamirano, Jorgelina Cecilia. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mendoza. Instituto Argentino de Nivología, Glaciología y Ciencias Ambientales. Provincia de Mendoza. Instituto Argentino de Nivología, Glaciología y Ciencias Ambientales. Universidad Nacional de Cuyo. Instituto Argentino de Nivología, Glaciología y Ciencias Ambientales; Argentina. Universidad Nacional de Cuyo. Facultad de Ciencias Exactas y Naturales; Argentina
Fil: Puliafito, Salvador Enrique. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mendoza. Instituto Argentino de Nivología, Glaciología y Ciencias Ambientales. Provincia de Mendoza. Instituto Argentino de Nivología, Glaciología y Ciencias Ambientales. Universidad Nacional de Cuyo. Instituto Argentino de Nivología, Glaciología y Ciencias Ambientales; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mendoza; Argentina
description Global monitoring of Persistent Organic Pollutants (POPs) has allowed the knowledge of levels and distribution around the world as well as the understanding of its transport through the atmosphere. However, there are still some gaps in this regard, especially in some locations, as the case of Great Mendoza, a medium-sized urban area located in the center-west of Argentina. In this work, the WRF/CALMET/CALPUFF modeling system was used to estimate airborne levels of four families of POPs (PCBs, PBDEs, DDTs and HCB) in the study area. The model was validated from measured data obtained from eleven sites using passive air samplers with polyurethane foam disks (PUFs), subsequently analyzed by GC-ECNI/MS. Considering both sets of data, measured and simulated airborne concentrations, five statistical performance metrics were calculated for each family of POP [Mean bias error, (MBE), Fractional Bias (FB), Normalized Mean Square Error (NMSE), Factor of two (Fa2) and Pearson correlation coefficient (r)]. Results exhibited a good agreement between modeled and measured data, showing that WRF/CALMET/CALPUFF modeling system predicts POPs airborne concentrations with reasonable accuracy at a local scale. Model output was used to examine the relative source contribution to ground-level concentrations and to assess the spatial variability of the studied POPs in the study area. Source apportionment showed the prevalence of emissions from open burning of municipal solid waste (ranging from 9% to 90%) on the simulated atmospheric concentrations. HCB presented the lowest mean contribution from this activity (37%) but the highest variability (SD = 20%), followed by PCBs (69 ± 9%), and PBDEs (84 ± 4%). The spatial pattern obtained from simulations exhibited that both, lowest and highest levels predicted by the model, occurred in areas where no samples were taken, suggesting that the real gradient in the POPs air concentrations would be much greater than those reflected by measured data. This work highlights the usefulness of the implementation of an atmospheric dispersion model, not only in the study of air quality and exposure levels but also as a tool for the proper design of monitoring networks, taking into account the time and cost that sampling campaigns take, and the conclusions that are intended to be made from the analysis of the obtained data.
publishDate 2020
dc.date.none.fl_str_mv 2020-01
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/147038
Ruggeri, María Florencia; Lana, Nerina Belén; Altamirano, Jorgelina Cecilia; Puliafito, Salvador Enrique; Spatial distribution, patterns and source contributions of POPs in the atmosphere of Great Mendoza using the WRF/CALMET/CALPUFF modelling system; KeAi Communications Co.; Emerging Contaminants; 6; 1-2020; 103-113
2405-6650
CONICET Digital
CONICET
url http://hdl.handle.net/11336/147038
identifier_str_mv Ruggeri, María Florencia; Lana, Nerina Belén; Altamirano, Jorgelina Cecilia; Puliafito, Salvador Enrique; Spatial distribution, patterns and source contributions of POPs in the atmosphere of Great Mendoza using the WRF/CALMET/CALPUFF modelling system; KeAi Communications Co.; Emerging Contaminants; 6; 1-2020; 103-113
2405-6650
CONICET Digital
CONICET
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/url/https://www.sciencedirect.com/science/article/pii/S2405665020300068
info:eu-repo/semantics/altIdentifier/doi/10.1016/j.emcon.2020.02.002
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by-nc-nd/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-nd/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
application/pdf
application/pdf
application/pdf
dc.publisher.none.fl_str_mv KeAi Communications Co.
publisher.none.fl_str_mv KeAi Communications Co.
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1842268940118523904
score 13.13397