The effect of factor interactions in Plackett-Burman experimental designs: Comparison of Bayesian-Gibbs analysis and genetic algorithms
- Autores
- Magallanes, Jorge Federico; Olivieri, Alejandro Cesar
- Año de publicación
- 2010
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- A genetic algorithm has been developed in order to estimate not only the main effects but also the association of terms when analyzing the influence of experimental factors through a Plackett-Burman design of experiments. The results for a series of simulated systems as well as experimental examples show excellent agreement with a Bayesian-Gibbs approach. The Plackett-Burman design is usually employed for screening, but its performance depends on the assumption that the interaction effects are negligible. Simulations allow one to analyze the effect of increasing interactions on the significance of main factors when Plackett-Burman designs are processed by neglecting factor associations.
Fil: Magallanes, Jorge Federico. Comisión Nacional de Energía Atómica; Argentina
Fil: Olivieri, Alejandro Cesar. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Rosario. Instituto de Química Rosario. Universidad Nacional de Rosario. Facultad de Ciencias Bioquímicas y Farmacéuticas. Instituto de Química Rosario; Argentina. Universidad Nacional de Rosario. Facultad de Ciencias Bioquímicas y Farmacéuticas. Departamento de Química Analítica; Argentina - Materia
-
BAYESIAN-GIBBS ANALYSIS
EXPERIMENTAL DESIGN AND MODELING
FACTOR ASSOCIATIONS
GENETIC ALGORITHMS
PLACKETT-BURMAN DESIGNS - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
.jpg)
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/128454
Ver los metadatos del registro completo
| id |
CONICETDig_8b924040d48d77264029160545bb3588 |
|---|---|
| oai_identifier_str |
oai:ri.conicet.gov.ar:11336/128454 |
| network_acronym_str |
CONICETDig |
| repository_id_str |
3498 |
| network_name_str |
CONICET Digital (CONICET) |
| spelling |
The effect of factor interactions in Plackett-Burman experimental designs: Comparison of Bayesian-Gibbs analysis and genetic algorithmsMagallanes, Jorge FedericoOlivieri, Alejandro CesarBAYESIAN-GIBBS ANALYSISEXPERIMENTAL DESIGN AND MODELINGFACTOR ASSOCIATIONSGENETIC ALGORITHMSPLACKETT-BURMAN DESIGNShttps://purl.org/becyt/ford/1.4https://purl.org/becyt/ford/1A genetic algorithm has been developed in order to estimate not only the main effects but also the association of terms when analyzing the influence of experimental factors through a Plackett-Burman design of experiments. The results for a series of simulated systems as well as experimental examples show excellent agreement with a Bayesian-Gibbs approach. The Plackett-Burman design is usually employed for screening, but its performance depends on the assumption that the interaction effects are negligible. Simulations allow one to analyze the effect of increasing interactions on the significance of main factors when Plackett-Burman designs are processed by neglecting factor associations.Fil: Magallanes, Jorge Federico. Comisión Nacional de Energía Atómica; ArgentinaFil: Olivieri, Alejandro Cesar. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Rosario. Instituto de Química Rosario. Universidad Nacional de Rosario. Facultad de Ciencias Bioquímicas y Farmacéuticas. Instituto de Química Rosario; Argentina. Universidad Nacional de Rosario. Facultad de Ciencias Bioquímicas y Farmacéuticas. Departamento de Química Analítica; ArgentinaElsevier Science2010-05info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/128454Magallanes, Jorge Federico; Olivieri, Alejandro Cesar; The effect of factor interactions in Plackett-Burman experimental designs: Comparison of Bayesian-Gibbs analysis and genetic algorithms; Elsevier Science; Chemometrics and Intelligent Laboratory Systems; 102; 1; 5-2010; 8-140169-7439CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/https://www.sciencedirect.com/science/article/abs/pii/S0169743910000316info:eu-repo/semantics/altIdentifier/doi/10.1016/j.chemolab.2010.02.007info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-10-22T11:25:09Zoai:ri.conicet.gov.ar:11336/128454instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-10-22 11:25:10.112CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
| dc.title.none.fl_str_mv |
The effect of factor interactions in Plackett-Burman experimental designs: Comparison of Bayesian-Gibbs analysis and genetic algorithms |
| title |
The effect of factor interactions in Plackett-Burman experimental designs: Comparison of Bayesian-Gibbs analysis and genetic algorithms |
| spellingShingle |
The effect of factor interactions in Plackett-Burman experimental designs: Comparison of Bayesian-Gibbs analysis and genetic algorithms Magallanes, Jorge Federico BAYESIAN-GIBBS ANALYSIS EXPERIMENTAL DESIGN AND MODELING FACTOR ASSOCIATIONS GENETIC ALGORITHMS PLACKETT-BURMAN DESIGNS |
| title_short |
The effect of factor interactions in Plackett-Burman experimental designs: Comparison of Bayesian-Gibbs analysis and genetic algorithms |
| title_full |
The effect of factor interactions in Plackett-Burman experimental designs: Comparison of Bayesian-Gibbs analysis and genetic algorithms |
| title_fullStr |
The effect of factor interactions in Plackett-Burman experimental designs: Comparison of Bayesian-Gibbs analysis and genetic algorithms |
| title_full_unstemmed |
The effect of factor interactions in Plackett-Burman experimental designs: Comparison of Bayesian-Gibbs analysis and genetic algorithms |
| title_sort |
The effect of factor interactions in Plackett-Burman experimental designs: Comparison of Bayesian-Gibbs analysis and genetic algorithms |
| dc.creator.none.fl_str_mv |
Magallanes, Jorge Federico Olivieri, Alejandro Cesar |
| author |
Magallanes, Jorge Federico |
| author_facet |
Magallanes, Jorge Federico Olivieri, Alejandro Cesar |
| author_role |
author |
| author2 |
Olivieri, Alejandro Cesar |
| author2_role |
author |
| dc.subject.none.fl_str_mv |
BAYESIAN-GIBBS ANALYSIS EXPERIMENTAL DESIGN AND MODELING FACTOR ASSOCIATIONS GENETIC ALGORITHMS PLACKETT-BURMAN DESIGNS |
| topic |
BAYESIAN-GIBBS ANALYSIS EXPERIMENTAL DESIGN AND MODELING FACTOR ASSOCIATIONS GENETIC ALGORITHMS PLACKETT-BURMAN DESIGNS |
| purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.4 https://purl.org/becyt/ford/1 |
| dc.description.none.fl_txt_mv |
A genetic algorithm has been developed in order to estimate not only the main effects but also the association of terms when analyzing the influence of experimental factors through a Plackett-Burman design of experiments. The results for a series of simulated systems as well as experimental examples show excellent agreement with a Bayesian-Gibbs approach. The Plackett-Burman design is usually employed for screening, but its performance depends on the assumption that the interaction effects are negligible. Simulations allow one to analyze the effect of increasing interactions on the significance of main factors when Plackett-Burman designs are processed by neglecting factor associations. Fil: Magallanes, Jorge Federico. Comisión Nacional de Energía Atómica; Argentina Fil: Olivieri, Alejandro Cesar. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Rosario. Instituto de Química Rosario. Universidad Nacional de Rosario. Facultad de Ciencias Bioquímicas y Farmacéuticas. Instituto de Química Rosario; Argentina. Universidad Nacional de Rosario. Facultad de Ciencias Bioquímicas y Farmacéuticas. Departamento de Química Analítica; Argentina |
| description |
A genetic algorithm has been developed in order to estimate not only the main effects but also the association of terms when analyzing the influence of experimental factors through a Plackett-Burman design of experiments. The results for a series of simulated systems as well as experimental examples show excellent agreement with a Bayesian-Gibbs approach. The Plackett-Burman design is usually employed for screening, but its performance depends on the assumption that the interaction effects are negligible. Simulations allow one to analyze the effect of increasing interactions on the significance of main factors when Plackett-Burman designs are processed by neglecting factor associations. |
| publishDate |
2010 |
| dc.date.none.fl_str_mv |
2010-05 |
| dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
| format |
article |
| status_str |
publishedVersion |
| dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/128454 Magallanes, Jorge Federico; Olivieri, Alejandro Cesar; The effect of factor interactions in Plackett-Burman experimental designs: Comparison of Bayesian-Gibbs analysis and genetic algorithms; Elsevier Science; Chemometrics and Intelligent Laboratory Systems; 102; 1; 5-2010; 8-14 0169-7439 CONICET Digital CONICET |
| url |
http://hdl.handle.net/11336/128454 |
| identifier_str_mv |
Magallanes, Jorge Federico; Olivieri, Alejandro Cesar; The effect of factor interactions in Plackett-Burman experimental designs: Comparison of Bayesian-Gibbs analysis and genetic algorithms; Elsevier Science; Chemometrics and Intelligent Laboratory Systems; 102; 1; 5-2010; 8-14 0169-7439 CONICET Digital CONICET |
| dc.language.none.fl_str_mv |
eng |
| language |
eng |
| dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/url/https://www.sciencedirect.com/science/article/abs/pii/S0169743910000316 info:eu-repo/semantics/altIdentifier/doi/10.1016/j.chemolab.2010.02.007 |
| dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
| eu_rights_str_mv |
openAccess |
| rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
| dc.format.none.fl_str_mv |
application/pdf application/pdf |
| dc.publisher.none.fl_str_mv |
Elsevier Science |
| publisher.none.fl_str_mv |
Elsevier Science |
| dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
| reponame_str |
CONICET Digital (CONICET) |
| collection |
CONICET Digital (CONICET) |
| instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
| repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
| repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
| _version_ |
1846781797726158848 |
| score |
12.982451 |