Uncovering interactions in Plackett–Burman screening designs applied to analytical systems: A Monte Carlo ant colony optimization approach
- Autores
- Olivieri, Alejandro Cesar; Magallanes, Jorge Federico
- Año de publicación
- 2012
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- Screening of relevant factors using Plackett–Burman designs is usual in analytical chemistry. It relies on the assumption that factor interactions are negligible; however, failure of recognizing such interactions may lead to incorrect results. Factor associations can be revealed by feature selection techniques such as ant colony optimization. This method has been combined with a Monte Carlo approach, developing a new algorithm for assessing both main and interaction terms when analyzing the influence of experimental factors through a Plackett–Burman design of experiments. The results for both simulated and analytically relevant experimental systems show excellent agreement with previous approaches, highlighting the importance of considering potential interactions when conducting a screening search.
Fil: Olivieri, Alejandro Cesar. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Rosario. Instituto de Química Rosario. Universidad Nacional de Rosario. Facultad de Ciencias Bioquímicas y Farmacéuticas. Instituto de Química Rosario; Argentina
Fil: Magallanes, Jorge Federico. Comisión Nacional de Energía Atómica; Argentina - Materia
-
Plackett–Burman designs
Factor associations
Ant colony optimization - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/105509
Ver los metadatos del registro completo
id |
CONICETDig_6e52cf931414a9f1c254042c2730bde3 |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/105509 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Uncovering interactions in Plackett–Burman screening designs applied to analytical systems: A Monte Carlo ant colony optimization approachOlivieri, Alejandro CesarMagallanes, Jorge FedericoPlackett–Burman designsFactor associationsAnt colony optimizationhttps://purl.org/becyt/ford/1.4https://purl.org/becyt/ford/1Screening of relevant factors using Plackett–Burman designs is usual in analytical chemistry. It relies on the assumption that factor interactions are negligible; however, failure of recognizing such interactions may lead to incorrect results. Factor associations can be revealed by feature selection techniques such as ant colony optimization. This method has been combined with a Monte Carlo approach, developing a new algorithm for assessing both main and interaction terms when analyzing the influence of experimental factors through a Plackett–Burman design of experiments. The results for both simulated and analytically relevant experimental systems show excellent agreement with previous approaches, highlighting the importance of considering potential interactions when conducting a screening search.Fil: Olivieri, Alejandro Cesar. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Rosario. Instituto de Química Rosario. Universidad Nacional de Rosario. Facultad de Ciencias Bioquímicas y Farmacéuticas. Instituto de Química Rosario; ArgentinaFil: Magallanes, Jorge Federico. Comisión Nacional de Energía Atómica; ArgentinaElsevier Science2012-08info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/105509Olivieri, Alejandro Cesar; Magallanes, Jorge Federico; Uncovering interactions in Plackett–Burman screening designs applied to analytical systems: A Monte Carlo ant colony optimization approach; Elsevier Science; Talanta; 97; 8-2012; 242-2480039-9140CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/https://www.sciencedirect.com/science/article/abs/pii/S0039914012003207info:eu-repo/semantics/altIdentifier/doi/10.1016/j.talanta.2012.04.025info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-03T09:44:37Zoai:ri.conicet.gov.ar:11336/105509instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-03 09:44:37.421CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Uncovering interactions in Plackett–Burman screening designs applied to analytical systems: A Monte Carlo ant colony optimization approach |
title |
Uncovering interactions in Plackett–Burman screening designs applied to analytical systems: A Monte Carlo ant colony optimization approach |
spellingShingle |
Uncovering interactions in Plackett–Burman screening designs applied to analytical systems: A Monte Carlo ant colony optimization approach Olivieri, Alejandro Cesar Plackett–Burman designs Factor associations Ant colony optimization |
title_short |
Uncovering interactions in Plackett–Burman screening designs applied to analytical systems: A Monte Carlo ant colony optimization approach |
title_full |
Uncovering interactions in Plackett–Burman screening designs applied to analytical systems: A Monte Carlo ant colony optimization approach |
title_fullStr |
Uncovering interactions in Plackett–Burman screening designs applied to analytical systems: A Monte Carlo ant colony optimization approach |
title_full_unstemmed |
Uncovering interactions in Plackett–Burman screening designs applied to analytical systems: A Monte Carlo ant colony optimization approach |
title_sort |
Uncovering interactions in Plackett–Burman screening designs applied to analytical systems: A Monte Carlo ant colony optimization approach |
dc.creator.none.fl_str_mv |
Olivieri, Alejandro Cesar Magallanes, Jorge Federico |
author |
Olivieri, Alejandro Cesar |
author_facet |
Olivieri, Alejandro Cesar Magallanes, Jorge Federico |
author_role |
author |
author2 |
Magallanes, Jorge Federico |
author2_role |
author |
dc.subject.none.fl_str_mv |
Plackett–Burman designs Factor associations Ant colony optimization |
topic |
Plackett–Burman designs Factor associations Ant colony optimization |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.4 https://purl.org/becyt/ford/1 |
dc.description.none.fl_txt_mv |
Screening of relevant factors using Plackett–Burman designs is usual in analytical chemistry. It relies on the assumption that factor interactions are negligible; however, failure of recognizing such interactions may lead to incorrect results. Factor associations can be revealed by feature selection techniques such as ant colony optimization. This method has been combined with a Monte Carlo approach, developing a new algorithm for assessing both main and interaction terms when analyzing the influence of experimental factors through a Plackett–Burman design of experiments. The results for both simulated and analytically relevant experimental systems show excellent agreement with previous approaches, highlighting the importance of considering potential interactions when conducting a screening search. Fil: Olivieri, Alejandro Cesar. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Rosario. Instituto de Química Rosario. Universidad Nacional de Rosario. Facultad de Ciencias Bioquímicas y Farmacéuticas. Instituto de Química Rosario; Argentina Fil: Magallanes, Jorge Federico. Comisión Nacional de Energía Atómica; Argentina |
description |
Screening of relevant factors using Plackett–Burman designs is usual in analytical chemistry. It relies on the assumption that factor interactions are negligible; however, failure of recognizing such interactions may lead to incorrect results. Factor associations can be revealed by feature selection techniques such as ant colony optimization. This method has been combined with a Monte Carlo approach, developing a new algorithm for assessing both main and interaction terms when analyzing the influence of experimental factors through a Plackett–Burman design of experiments. The results for both simulated and analytically relevant experimental systems show excellent agreement with previous approaches, highlighting the importance of considering potential interactions when conducting a screening search. |
publishDate |
2012 |
dc.date.none.fl_str_mv |
2012-08 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/105509 Olivieri, Alejandro Cesar; Magallanes, Jorge Federico; Uncovering interactions in Plackett–Burman screening designs applied to analytical systems: A Monte Carlo ant colony optimization approach; Elsevier Science; Talanta; 97; 8-2012; 242-248 0039-9140 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/105509 |
identifier_str_mv |
Olivieri, Alejandro Cesar; Magallanes, Jorge Federico; Uncovering interactions in Plackett–Burman screening designs applied to analytical systems: A Monte Carlo ant colony optimization approach; Elsevier Science; Talanta; 97; 8-2012; 242-248 0039-9140 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/url/https://www.sciencedirect.com/science/article/abs/pii/S0039914012003207 info:eu-repo/semantics/altIdentifier/doi/10.1016/j.talanta.2012.04.025 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
Elsevier Science |
publisher.none.fl_str_mv |
Elsevier Science |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1842268679164657664 |
score |
13.13397 |