A Computational Theory for the Emergence of Grammatical Categories in Cortical Dynamics
- Autores
- Dematties, Dario Jesus; Rizzi, Silvio; Thiruvathukal, George K.; Pérez Cesaretti, Mauricio David; Wainselboim, Alejandro Javier; Zanutto, Bonifacio Silvano
- Año de publicación
- 2020
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- A general agreement in psycholinguistics claims that syntax and meaning are unified precisely and very quickly during online sentence processing. Although several theories have advanced arguments regarding the neurocomputational bases of this phenomenon, we argue that these theories could potentially benefit by including neurophysiological data concerning cortical dynamics constraints in brain tissue. In addition, some theories promote the integration of complex optimization methods in neural tissue. In this paper we attempt to fill these gaps introducing a computational model inspired in the dynamics of cortical tissue. In our modeling approach, proximal afferent dendrites produce stochastic cellular activations, while distal dendritic branches–on the other hand–contribute independently to somatic depolarization by means of dendritic spikes, and finally, prediction failures produce massive firing events preventing formation of sparse distributed representations. The model presented in this paper combines semantic and coarse-grained syntactic constraints for each word in a sentence context until grammatically related word function discrimination emerges spontaneously by the sole correlation of lexical information from different sources without applying complex optimization methods. By means of support vector machine techniques, we show that the sparse activation features returned by our approach are well suited—bootstrapping from the features returned by Word Embedding mechanisms—to accomplish grammatical function classification of individual words in a sentence. In this way we develop a biologically guided computational explanation for linguistically relevant unification processes in cortex which connects psycholinguistics to neurobiological accounts of language. We also claim that the computational hypotheses established in this research could foster future work on biologically-inspired learning algorithms for natural language processing applications.
Fil: Dematties, Dario Jesus. Universidad de Buenos Aires. Facultad de Ingeniería. Instituto de Ingeniería Biomédica; Argentina
Fil: Rizzi, Silvio. Argonne National Laboratory; Estados Unidos
Fil: Thiruvathukal, George K.. University of Chicago; Estados Unidos. Argonne National Laboratory; Estados Unidos
Fil: Pérez Cesaretti, Mauricio David. Uppsala Universitet.; Suecia
Fil: Wainselboim, Alejandro Javier. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mendoza. Instituto de Ciencias Humanas, Sociales y Ambientales; Argentina
Fil: Zanutto, Bonifacio Silvano. Consejo Nacional de Investigaciones Científicas y Técnicas. Instituto de Biología y Medicina Experimental. Fundación de Instituto de Biología y Medicina Experimental. Instituto de Biología y Medicina Experimental; Argentina. Universidad de Buenos Aires. Facultad de Ingeniería. Instituto de Ingeniería Biomédica; Argentina - Materia
-
CORTICAL DYNAMICS
UNSUPERVISED LEARNING
BRAIN-INSPIRED ARTIFICIAL NEURAL NETWORKS
GRAMMAR EMERGENCE - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/107553
Ver los metadatos del registro completo
id |
CONICETDig_8b70620e8d811fd8298017786b95e9ea |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/107553 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
A Computational Theory for the Emergence of Grammatical Categories in Cortical DynamicsDematties, Dario JesusRizzi, SilvioThiruvathukal, George K.Pérez Cesaretti, Mauricio DavidWainselboim, Alejandro JavierZanutto, Bonifacio SilvanoCORTICAL DYNAMICSUNSUPERVISED LEARNINGBRAIN-INSPIRED ARTIFICIAL NEURAL NETWORKSGRAMMAR EMERGENCEA general agreement in psycholinguistics claims that syntax and meaning are unified precisely and very quickly during online sentence processing. Although several theories have advanced arguments regarding the neurocomputational bases of this phenomenon, we argue that these theories could potentially benefit by including neurophysiological data concerning cortical dynamics constraints in brain tissue. In addition, some theories promote the integration of complex optimization methods in neural tissue. In this paper we attempt to fill these gaps introducing a computational model inspired in the dynamics of cortical tissue. In our modeling approach, proximal afferent dendrites produce stochastic cellular activations, while distal dendritic branches–on the other hand–contribute independently to somatic depolarization by means of dendritic spikes, and finally, prediction failures produce massive firing events preventing formation of sparse distributed representations. The model presented in this paper combines semantic and coarse-grained syntactic constraints for each word in a sentence context until grammatically related word function discrimination emerges spontaneously by the sole correlation of lexical information from different sources without applying complex optimization methods. By means of support vector machine techniques, we show that the sparse activation features returned by our approach are well suited—bootstrapping from the features returned by Word Embedding mechanisms—to accomplish grammatical function classification of individual words in a sentence. In this way we develop a biologically guided computational explanation for linguistically relevant unification processes in cortex which connects psycholinguistics to neurobiological accounts of language. We also claim that the computational hypotheses established in this research could foster future work on biologically-inspired learning algorithms for natural language processing applications.Fil: Dematties, Dario Jesus. Universidad de Buenos Aires. Facultad de Ingeniería. Instituto de Ingeniería Biomédica; ArgentinaFil: Rizzi, Silvio. Argonne National Laboratory; Estados UnidosFil: Thiruvathukal, George K.. University of Chicago; Estados Unidos. Argonne National Laboratory; Estados UnidosFil: Pérez Cesaretti, Mauricio David. Uppsala Universitet.; SueciaFil: Wainselboim, Alejandro Javier. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mendoza. Instituto de Ciencias Humanas, Sociales y Ambientales; ArgentinaFil: Zanutto, Bonifacio Silvano. Consejo Nacional de Investigaciones Científicas y Técnicas. Instituto de Biología y Medicina Experimental. Fundación de Instituto de Biología y Medicina Experimental. Instituto de Biología y Medicina Experimental; Argentina. Universidad de Buenos Aires. Facultad de Ingeniería. Instituto de Ingeniería Biomédica; ArgentinaFrontiers Research Foundation2020-04info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/vnd.openxmlformats-officedocument.wordprocessingml.documentapplication/pdfhttp://hdl.handle.net/11336/107553Dematties, Dario Jesus; Rizzi, Silvio; Thiruvathukal, George K.; Pérez Cesaretti, Mauricio David; Wainselboim, Alejandro Javier; et al.; A Computational Theory for the Emergence of Grammatical Categories in Cortical Dynamics; Frontiers Research Foundation; Frontiers in Neural Circuits; 14; 4-2020; 1-691662-5110CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/doi/10.3389/fncir.2020.00012info:eu-repo/semantics/altIdentifier/url/https://www.frontiersin.org/article/10.3389/fncir.2020.00012/fullinfo:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T09:40:11Zoai:ri.conicet.gov.ar:11336/107553instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 09:40:12.088CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
A Computational Theory for the Emergence of Grammatical Categories in Cortical Dynamics |
title |
A Computational Theory for the Emergence of Grammatical Categories in Cortical Dynamics |
spellingShingle |
A Computational Theory for the Emergence of Grammatical Categories in Cortical Dynamics Dematties, Dario Jesus CORTICAL DYNAMICS UNSUPERVISED LEARNING BRAIN-INSPIRED ARTIFICIAL NEURAL NETWORKS GRAMMAR EMERGENCE |
title_short |
A Computational Theory for the Emergence of Grammatical Categories in Cortical Dynamics |
title_full |
A Computational Theory for the Emergence of Grammatical Categories in Cortical Dynamics |
title_fullStr |
A Computational Theory for the Emergence of Grammatical Categories in Cortical Dynamics |
title_full_unstemmed |
A Computational Theory for the Emergence of Grammatical Categories in Cortical Dynamics |
title_sort |
A Computational Theory for the Emergence of Grammatical Categories in Cortical Dynamics |
dc.creator.none.fl_str_mv |
Dematties, Dario Jesus Rizzi, Silvio Thiruvathukal, George K. Pérez Cesaretti, Mauricio David Wainselboim, Alejandro Javier Zanutto, Bonifacio Silvano |
author |
Dematties, Dario Jesus |
author_facet |
Dematties, Dario Jesus Rizzi, Silvio Thiruvathukal, George K. Pérez Cesaretti, Mauricio David Wainselboim, Alejandro Javier Zanutto, Bonifacio Silvano |
author_role |
author |
author2 |
Rizzi, Silvio Thiruvathukal, George K. Pérez Cesaretti, Mauricio David Wainselboim, Alejandro Javier Zanutto, Bonifacio Silvano |
author2_role |
author author author author author |
dc.subject.none.fl_str_mv |
CORTICAL DYNAMICS UNSUPERVISED LEARNING BRAIN-INSPIRED ARTIFICIAL NEURAL NETWORKS GRAMMAR EMERGENCE |
topic |
CORTICAL DYNAMICS UNSUPERVISED LEARNING BRAIN-INSPIRED ARTIFICIAL NEURAL NETWORKS GRAMMAR EMERGENCE |
dc.description.none.fl_txt_mv |
A general agreement in psycholinguistics claims that syntax and meaning are unified precisely and very quickly during online sentence processing. Although several theories have advanced arguments regarding the neurocomputational bases of this phenomenon, we argue that these theories could potentially benefit by including neurophysiological data concerning cortical dynamics constraints in brain tissue. In addition, some theories promote the integration of complex optimization methods in neural tissue. In this paper we attempt to fill these gaps introducing a computational model inspired in the dynamics of cortical tissue. In our modeling approach, proximal afferent dendrites produce stochastic cellular activations, while distal dendritic branches–on the other hand–contribute independently to somatic depolarization by means of dendritic spikes, and finally, prediction failures produce massive firing events preventing formation of sparse distributed representations. The model presented in this paper combines semantic and coarse-grained syntactic constraints for each word in a sentence context until grammatically related word function discrimination emerges spontaneously by the sole correlation of lexical information from different sources without applying complex optimization methods. By means of support vector machine techniques, we show that the sparse activation features returned by our approach are well suited—bootstrapping from the features returned by Word Embedding mechanisms—to accomplish grammatical function classification of individual words in a sentence. In this way we develop a biologically guided computational explanation for linguistically relevant unification processes in cortex which connects psycholinguistics to neurobiological accounts of language. We also claim that the computational hypotheses established in this research could foster future work on biologically-inspired learning algorithms for natural language processing applications. Fil: Dematties, Dario Jesus. Universidad de Buenos Aires. Facultad de Ingeniería. Instituto de Ingeniería Biomédica; Argentina Fil: Rizzi, Silvio. Argonne National Laboratory; Estados Unidos Fil: Thiruvathukal, George K.. University of Chicago; Estados Unidos. Argonne National Laboratory; Estados Unidos Fil: Pérez Cesaretti, Mauricio David. Uppsala Universitet.; Suecia Fil: Wainselboim, Alejandro Javier. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mendoza. Instituto de Ciencias Humanas, Sociales y Ambientales; Argentina Fil: Zanutto, Bonifacio Silvano. Consejo Nacional de Investigaciones Científicas y Técnicas. Instituto de Biología y Medicina Experimental. Fundación de Instituto de Biología y Medicina Experimental. Instituto de Biología y Medicina Experimental; Argentina. Universidad de Buenos Aires. Facultad de Ingeniería. Instituto de Ingeniería Biomédica; Argentina |
description |
A general agreement in psycholinguistics claims that syntax and meaning are unified precisely and very quickly during online sentence processing. Although several theories have advanced arguments regarding the neurocomputational bases of this phenomenon, we argue that these theories could potentially benefit by including neurophysiological data concerning cortical dynamics constraints in brain tissue. In addition, some theories promote the integration of complex optimization methods in neural tissue. In this paper we attempt to fill these gaps introducing a computational model inspired in the dynamics of cortical tissue. In our modeling approach, proximal afferent dendrites produce stochastic cellular activations, while distal dendritic branches–on the other hand–contribute independently to somatic depolarization by means of dendritic spikes, and finally, prediction failures produce massive firing events preventing formation of sparse distributed representations. The model presented in this paper combines semantic and coarse-grained syntactic constraints for each word in a sentence context until grammatically related word function discrimination emerges spontaneously by the sole correlation of lexical information from different sources without applying complex optimization methods. By means of support vector machine techniques, we show that the sparse activation features returned by our approach are well suited—bootstrapping from the features returned by Word Embedding mechanisms—to accomplish grammatical function classification of individual words in a sentence. In this way we develop a biologically guided computational explanation for linguistically relevant unification processes in cortex which connects psycholinguistics to neurobiological accounts of language. We also claim that the computational hypotheses established in this research could foster future work on biologically-inspired learning algorithms for natural language processing applications. |
publishDate |
2020 |
dc.date.none.fl_str_mv |
2020-04 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/107553 Dematties, Dario Jesus; Rizzi, Silvio; Thiruvathukal, George K.; Pérez Cesaretti, Mauricio David; Wainselboim, Alejandro Javier; et al.; A Computational Theory for the Emergence of Grammatical Categories in Cortical Dynamics; Frontiers Research Foundation; Frontiers in Neural Circuits; 14; 4-2020; 1-69 1662-5110 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/107553 |
identifier_str_mv |
Dematties, Dario Jesus; Rizzi, Silvio; Thiruvathukal, George K.; Pérez Cesaretti, Mauricio David; Wainselboim, Alejandro Javier; et al.; A Computational Theory for the Emergence of Grammatical Categories in Cortical Dynamics; Frontiers Research Foundation; Frontiers in Neural Circuits; 14; 4-2020; 1-69 1662-5110 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/doi/10.3389/fncir.2020.00012 info:eu-repo/semantics/altIdentifier/url/https://www.frontiersin.org/article/10.3389/fncir.2020.00012/full |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/vnd.openxmlformats-officedocument.wordprocessingml.document application/pdf |
dc.publisher.none.fl_str_mv |
Frontiers Research Foundation |
publisher.none.fl_str_mv |
Frontiers Research Foundation |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1844613271671275520 |
score |
13.070432 |