Predicting Known Sentences: Neural Basis of Proverb Reading Using Non-parametric Statistical Testing and Mixed-Effects Models
- Autores
- Bianchi, Bruno; Shalóm, Diego Edgar; Kamienkowski, Juan Esteban
- Año de publicación
- 2019
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- Predictions of future events play an important role in daily activities, such as visual search, listening, or reading. They allow us to plan future actions and to anticipate their outcomes. Reading, a natural, commonly studied behavior, could shed light over the brain processes that underlie those prediction mechanisms. We hypothesized that different mechanisms must lead predictions along common sentences and proverbs. The former ones are more based on semantic and syntactic cues, and the last ones are almost purely based on long-term memory. Here we show that the modulation of the N400 by Cloze-Task Predictability is strongly present in common sentences, but not in proverbs. Moreover, we present a novel combination of linear mixed models to account for multiple variables, and a cluster-based permutation procedure to control for multiple comparisons. Our results suggest that different prediction mechanisms are present during reading.
Fil: Bianchi, Bruno. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigación en Ciencias de la Computación. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Investigación en Ciencias de la Computación; Argentina. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Física; Argentina
Fil: Shalóm, Diego Edgar. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Física; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
Fil: Kamienkowski, Juan Esteban. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigación en Ciencias de la Computación. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Investigación en Ciencias de la Computación; Argentina. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Física; Argentina - Materia
-
CLUSTER-BASED PERMUTATION TEST
ELECTROENCEPHALOGRAPHY
LINEAR MIXED MODELS
N400
PREDICTABILITY
READING - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/115232
Ver los metadatos del registro completo
id |
CONICETDig_89b2885f3a36528be9ed1b92e587d925 |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/115232 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Predicting Known Sentences: Neural Basis of Proverb Reading Using Non-parametric Statistical Testing and Mixed-Effects ModelsBianchi, BrunoShalóm, Diego EdgarKamienkowski, Juan EstebanCLUSTER-BASED PERMUTATION TESTELECTROENCEPHALOGRAPHYLINEAR MIXED MODELSN400PREDICTABILITYREADINGhttps://purl.org/becyt/ford/1.2https://purl.org/becyt/ford/1Predictions of future events play an important role in daily activities, such as visual search, listening, or reading. They allow us to plan future actions and to anticipate their outcomes. Reading, a natural, commonly studied behavior, could shed light over the brain processes that underlie those prediction mechanisms. We hypothesized that different mechanisms must lead predictions along common sentences and proverbs. The former ones are more based on semantic and syntactic cues, and the last ones are almost purely based on long-term memory. Here we show that the modulation of the N400 by Cloze-Task Predictability is strongly present in common sentences, but not in proverbs. Moreover, we present a novel combination of linear mixed models to account for multiple variables, and a cluster-based permutation procedure to control for multiple comparisons. Our results suggest that different prediction mechanisms are present during reading.Fil: Bianchi, Bruno. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigación en Ciencias de la Computación. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Investigación en Ciencias de la Computación; Argentina. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Física; ArgentinaFil: Shalóm, Diego Edgar. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Física; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Kamienkowski, Juan Esteban. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigación en Ciencias de la Computación. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Investigación en Ciencias de la Computación; Argentina. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Física; ArgentinaFrontiers Research Foundation2019-02info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/115232Bianchi, Bruno; Shalóm, Diego Edgar; Kamienkowski, Juan Esteban; Predicting Known Sentences: Neural Basis of Proverb Reading Using Non-parametric Statistical Testing and Mixed-Effects Models; Frontiers Research Foundation; Frontiers In Human Neuroscience; 13; 82; 2-2019; 1-111662-5161CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/https://www.frontiersin.org/article/10.3389/fnhum.2019.00082/fullinfo:eu-repo/semantics/altIdentifier/doi/10.3389/fnhum.2019.00082info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-10-15T15:30:01Zoai:ri.conicet.gov.ar:11336/115232instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-10-15 15:30:01.81CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Predicting Known Sentences: Neural Basis of Proverb Reading Using Non-parametric Statistical Testing and Mixed-Effects Models |
title |
Predicting Known Sentences: Neural Basis of Proverb Reading Using Non-parametric Statistical Testing and Mixed-Effects Models |
spellingShingle |
Predicting Known Sentences: Neural Basis of Proverb Reading Using Non-parametric Statistical Testing and Mixed-Effects Models Bianchi, Bruno CLUSTER-BASED PERMUTATION TEST ELECTROENCEPHALOGRAPHY LINEAR MIXED MODELS N400 PREDICTABILITY READING |
title_short |
Predicting Known Sentences: Neural Basis of Proverb Reading Using Non-parametric Statistical Testing and Mixed-Effects Models |
title_full |
Predicting Known Sentences: Neural Basis of Proverb Reading Using Non-parametric Statistical Testing and Mixed-Effects Models |
title_fullStr |
Predicting Known Sentences: Neural Basis of Proverb Reading Using Non-parametric Statistical Testing and Mixed-Effects Models |
title_full_unstemmed |
Predicting Known Sentences: Neural Basis of Proverb Reading Using Non-parametric Statistical Testing and Mixed-Effects Models |
title_sort |
Predicting Known Sentences: Neural Basis of Proverb Reading Using Non-parametric Statistical Testing and Mixed-Effects Models |
dc.creator.none.fl_str_mv |
Bianchi, Bruno Shalóm, Diego Edgar Kamienkowski, Juan Esteban |
author |
Bianchi, Bruno |
author_facet |
Bianchi, Bruno Shalóm, Diego Edgar Kamienkowski, Juan Esteban |
author_role |
author |
author2 |
Shalóm, Diego Edgar Kamienkowski, Juan Esteban |
author2_role |
author author |
dc.subject.none.fl_str_mv |
CLUSTER-BASED PERMUTATION TEST ELECTROENCEPHALOGRAPHY LINEAR MIXED MODELS N400 PREDICTABILITY READING |
topic |
CLUSTER-BASED PERMUTATION TEST ELECTROENCEPHALOGRAPHY LINEAR MIXED MODELS N400 PREDICTABILITY READING |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.2 https://purl.org/becyt/ford/1 |
dc.description.none.fl_txt_mv |
Predictions of future events play an important role in daily activities, such as visual search, listening, or reading. They allow us to plan future actions and to anticipate their outcomes. Reading, a natural, commonly studied behavior, could shed light over the brain processes that underlie those prediction mechanisms. We hypothesized that different mechanisms must lead predictions along common sentences and proverbs. The former ones are more based on semantic and syntactic cues, and the last ones are almost purely based on long-term memory. Here we show that the modulation of the N400 by Cloze-Task Predictability is strongly present in common sentences, but not in proverbs. Moreover, we present a novel combination of linear mixed models to account for multiple variables, and a cluster-based permutation procedure to control for multiple comparisons. Our results suggest that different prediction mechanisms are present during reading. Fil: Bianchi, Bruno. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigación en Ciencias de la Computación. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Investigación en Ciencias de la Computación; Argentina. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Física; Argentina Fil: Shalóm, Diego Edgar. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Física; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina Fil: Kamienkowski, Juan Esteban. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigación en Ciencias de la Computación. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Investigación en Ciencias de la Computación; Argentina. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Física; Argentina |
description |
Predictions of future events play an important role in daily activities, such as visual search, listening, or reading. They allow us to plan future actions and to anticipate their outcomes. Reading, a natural, commonly studied behavior, could shed light over the brain processes that underlie those prediction mechanisms. We hypothesized that different mechanisms must lead predictions along common sentences and proverbs. The former ones are more based on semantic and syntactic cues, and the last ones are almost purely based on long-term memory. Here we show that the modulation of the N400 by Cloze-Task Predictability is strongly present in common sentences, but not in proverbs. Moreover, we present a novel combination of linear mixed models to account for multiple variables, and a cluster-based permutation procedure to control for multiple comparisons. Our results suggest that different prediction mechanisms are present during reading. |
publishDate |
2019 |
dc.date.none.fl_str_mv |
2019-02 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/115232 Bianchi, Bruno; Shalóm, Diego Edgar; Kamienkowski, Juan Esteban; Predicting Known Sentences: Neural Basis of Proverb Reading Using Non-parametric Statistical Testing and Mixed-Effects Models; Frontiers Research Foundation; Frontiers In Human Neuroscience; 13; 82; 2-2019; 1-11 1662-5161 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/115232 |
identifier_str_mv |
Bianchi, Bruno; Shalóm, Diego Edgar; Kamienkowski, Juan Esteban; Predicting Known Sentences: Neural Basis of Proverb Reading Using Non-parametric Statistical Testing and Mixed-Effects Models; Frontiers Research Foundation; Frontiers In Human Neuroscience; 13; 82; 2-2019; 1-11 1662-5161 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/url/https://www.frontiersin.org/article/10.3389/fnhum.2019.00082/full info:eu-repo/semantics/altIdentifier/doi/10.3389/fnhum.2019.00082 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
Frontiers Research Foundation |
publisher.none.fl_str_mv |
Frontiers Research Foundation |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1846083438868692992 |
score |
13.22299 |