Automatic Design of Window Operators for the Segmentation of the Prostate Gland in Magnetic Resonance Images
- Autores
- Benalcazar Palacios, Marco Enrique; Brun, Marcel; Ballarin, Virginia Laura
- Año de publicación
- 2014
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- W-operators are nonlinear image operators that are translation invariant and locally defined inside a finite spatial window. In this work, we consider the problem of automatic design of W-operators for the segmentation of magnetic resonance (MR) volumes as a problem of classifier design. We propose to segment the objects of interest in an MR volume by classifying each pixel of its slices as either part of the objects of interest or background. The classifiers used here are the artificial feed-forward neural networks. The proposed method is applied to the segmentation of the two main regions of the prostate gland: the peripheral zone and the central gland. Performance evaluation was carried out on the volumes of the Prostate-3T collection of the NCI-ISBI 2013 Challenge. The results obtained show the suitability of our approach as a marker detector of the prostate gland.
Fil: Benalcazar Palacios, Marco Enrique. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad Nacional de Mar del Plata; Argentina. Secretaría Nacional de Educación Superior, Ciencia, Tecnología e Innovación. Guayaquil; Ecuador
Fil: Brun, Marcel. Universidad Nacional de Mar del Plata; Argentina
Fil: Ballarin, Virginia Laura. Universidad Nacional de Mar del Plata; Argentina - Materia
-
W-Operator
Segmentation
Magnetic Resonance
Prostate Gland
Feed-Forward Neural Network - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/34830
Ver los metadatos del registro completo
id |
CONICETDig_895cdf443709aa1bd2cc7d0c14faed65 |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/34830 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Automatic Design of Window Operators for the Segmentation of the Prostate Gland in Magnetic Resonance ImagesBenalcazar Palacios, Marco EnriqueBrun, MarcelBallarin, Virginia LauraW-OperatorSegmentationMagnetic ResonanceProstate GlandFeed-Forward Neural Networkhttps://purl.org/becyt/ford/1.2https://purl.org/becyt/ford/1W-operators are nonlinear image operators that are translation invariant and locally defined inside a finite spatial window. In this work, we consider the problem of automatic design of W-operators for the segmentation of magnetic resonance (MR) volumes as a problem of classifier design. We propose to segment the objects of interest in an MR volume by classifying each pixel of its slices as either part of the objects of interest or background. The classifiers used here are the artificial feed-forward neural networks. The proposed method is applied to the segmentation of the two main regions of the prostate gland: the peripheral zone and the central gland. Performance evaluation was carried out on the volumes of the Prostate-3T collection of the NCI-ISBI 2013 Challenge. The results obtained show the suitability of our approach as a marker detector of the prostate gland.Fil: Benalcazar Palacios, Marco Enrique. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad Nacional de Mar del Plata; Argentina. Secretaría Nacional de Educación Superior, Ciencia, Tecnología e Innovación. Guayaquil; EcuadorFil: Brun, Marcel. Universidad Nacional de Mar del Plata; ArgentinaFil: Ballarin, Virginia Laura. Universidad Nacional de Mar del Plata; ArgentinaSpringer2014-10info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/34830Benalcazar Palacios, Marco Enrique; Brun, Marcel; Ballarin, Virginia Laura; Automatic Design of Window Operators for the Segmentation of the Prostate Gland in Magnetic Resonance Images; Springer; Ifmbe Proceedings; 49; 10-2014; 417-4201680-0737CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/doi/10.1007/978-3-319-13117-7_107info:eu-repo/semantics/altIdentifier/url/https://link.springer.com/chapter/10.1007%2F978-3-319-13117-7_107info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T10:08:35Zoai:ri.conicet.gov.ar:11336/34830instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 10:08:35.825CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Automatic Design of Window Operators for the Segmentation of the Prostate Gland in Magnetic Resonance Images |
title |
Automatic Design of Window Operators for the Segmentation of the Prostate Gland in Magnetic Resonance Images |
spellingShingle |
Automatic Design of Window Operators for the Segmentation of the Prostate Gland in Magnetic Resonance Images Benalcazar Palacios, Marco Enrique W-Operator Segmentation Magnetic Resonance Prostate Gland Feed-Forward Neural Network |
title_short |
Automatic Design of Window Operators for the Segmentation of the Prostate Gland in Magnetic Resonance Images |
title_full |
Automatic Design of Window Operators for the Segmentation of the Prostate Gland in Magnetic Resonance Images |
title_fullStr |
Automatic Design of Window Operators for the Segmentation of the Prostate Gland in Magnetic Resonance Images |
title_full_unstemmed |
Automatic Design of Window Operators for the Segmentation of the Prostate Gland in Magnetic Resonance Images |
title_sort |
Automatic Design of Window Operators for the Segmentation of the Prostate Gland in Magnetic Resonance Images |
dc.creator.none.fl_str_mv |
Benalcazar Palacios, Marco Enrique Brun, Marcel Ballarin, Virginia Laura |
author |
Benalcazar Palacios, Marco Enrique |
author_facet |
Benalcazar Palacios, Marco Enrique Brun, Marcel Ballarin, Virginia Laura |
author_role |
author |
author2 |
Brun, Marcel Ballarin, Virginia Laura |
author2_role |
author author |
dc.subject.none.fl_str_mv |
W-Operator Segmentation Magnetic Resonance Prostate Gland Feed-Forward Neural Network |
topic |
W-Operator Segmentation Magnetic Resonance Prostate Gland Feed-Forward Neural Network |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.2 https://purl.org/becyt/ford/1 |
dc.description.none.fl_txt_mv |
W-operators are nonlinear image operators that are translation invariant and locally defined inside a finite spatial window. In this work, we consider the problem of automatic design of W-operators for the segmentation of magnetic resonance (MR) volumes as a problem of classifier design. We propose to segment the objects of interest in an MR volume by classifying each pixel of its slices as either part of the objects of interest or background. The classifiers used here are the artificial feed-forward neural networks. The proposed method is applied to the segmentation of the two main regions of the prostate gland: the peripheral zone and the central gland. Performance evaluation was carried out on the volumes of the Prostate-3T collection of the NCI-ISBI 2013 Challenge. The results obtained show the suitability of our approach as a marker detector of the prostate gland. Fil: Benalcazar Palacios, Marco Enrique. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad Nacional de Mar del Plata; Argentina. Secretaría Nacional de Educación Superior, Ciencia, Tecnología e Innovación. Guayaquil; Ecuador Fil: Brun, Marcel. Universidad Nacional de Mar del Plata; Argentina Fil: Ballarin, Virginia Laura. Universidad Nacional de Mar del Plata; Argentina |
description |
W-operators are nonlinear image operators that are translation invariant and locally defined inside a finite spatial window. In this work, we consider the problem of automatic design of W-operators for the segmentation of magnetic resonance (MR) volumes as a problem of classifier design. We propose to segment the objects of interest in an MR volume by classifying each pixel of its slices as either part of the objects of interest or background. The classifiers used here are the artificial feed-forward neural networks. The proposed method is applied to the segmentation of the two main regions of the prostate gland: the peripheral zone and the central gland. Performance evaluation was carried out on the volumes of the Prostate-3T collection of the NCI-ISBI 2013 Challenge. The results obtained show the suitability of our approach as a marker detector of the prostate gland. |
publishDate |
2014 |
dc.date.none.fl_str_mv |
2014-10 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/34830 Benalcazar Palacios, Marco Enrique; Brun, Marcel; Ballarin, Virginia Laura; Automatic Design of Window Operators for the Segmentation of the Prostate Gland in Magnetic Resonance Images; Springer; Ifmbe Proceedings; 49; 10-2014; 417-420 1680-0737 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/34830 |
identifier_str_mv |
Benalcazar Palacios, Marco Enrique; Brun, Marcel; Ballarin, Virginia Laura; Automatic Design of Window Operators for the Segmentation of the Prostate Gland in Magnetic Resonance Images; Springer; Ifmbe Proceedings; 49; 10-2014; 417-420 1680-0737 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/doi/10.1007/978-3-319-13117-7_107 info:eu-repo/semantics/altIdentifier/url/https://link.springer.com/chapter/10.1007%2F978-3-319-13117-7_107 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
Springer |
publisher.none.fl_str_mv |
Springer |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1844613955028254720 |
score |
13.070432 |