State-Space Approach to Structural Representation of Perturbed Pitch Period Sequences in Voice Signals
- Autores
- Alzamendi, Gabriel Alejandro; Schlotthauer, Gaston; Torres, Maria Eugenia
- Año de publicación
- 2015
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- Objectives: The aim of this study was to propose a state space-based approach to model perturbed pitch period sequences (PPSs), extracted from real sustained vowels, combining the principal features of disturbed real PPSs with structural analysis of stochastic time series and state space methods. Methods: The PPSs were obtained from a database composed of 53 healthy subjects. State space models were developed taking into account different structures and complexity levels. PPS features such as trend, cycle, and irregular structures were considered. Model parameters were calculated using optimization procedures. For each PPS, state estimates were obtained combining the developed models and diffuse initialization with filtering and smoothing methods. Statistical tests were applied to objectively evaluate the performance of this method. Results: Statistical tests demonstrated that the proposed approach correctly represented more than the 75% of the database with a significance value of 0.05. In the analysis, structural estimates suitably characterized the dynamics of the PPSs. Trend estimates proved to properly represent slow long-term dynamics, whereas cycle estimates captured short-term autoregressive dependencies. Conclusions: The present study demonstrated that the proposed approach is suitable for representing and analyzing real perturbed PPSs, also allowing to extract further information related to the phonation process.
Fil: Alzamendi, Gabriel Alejandro. Universidad Nacional de Entre Ríos. Facultad de Ingeniería. Departamento de Matemática e Informática. Laboratorio de Señales y Dinámicas no Lineales; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
Fil: Schlotthauer, Gaston. Universidad Nacional de Entre Ríos. Facultad de Ingeniería. Departamento de Matemática e Informática. Laboratorio de Señales y Dinámicas no Lineales; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
Fil: Torres, Maria Eugenia. Universidad Nacional de Entre Ríos. Facultad de Ingeniería. Departamento de Matemática e Informática. Laboratorio de Señales y Dinámicas no Lineales; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina - Materia
-
Perturbed Pitch Periods
Stochastic Pitch Model
Jitter
Structural Time-Series Analysis
State-Space Models - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-nd/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/42313
Ver los metadatos del registro completo
id |
CONICETDig_8914b4bcba8f92d4d18c15c46ca30ba5 |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/42313 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
State-Space Approach to Structural Representation of Perturbed Pitch Period Sequences in Voice SignalsAlzamendi, Gabriel AlejandroSchlotthauer, GastonTorres, Maria EugeniaPerturbed Pitch PeriodsStochastic Pitch ModelJitterStructural Time-Series AnalysisState-Space Modelshttps://purl.org/becyt/ford/2.2https://purl.org/becyt/ford/2Objectives: The aim of this study was to propose a state space-based approach to model perturbed pitch period sequences (PPSs), extracted from real sustained vowels, combining the principal features of disturbed real PPSs with structural analysis of stochastic time series and state space methods. Methods: The PPSs were obtained from a database composed of 53 healthy subjects. State space models were developed taking into account different structures and complexity levels. PPS features such as trend, cycle, and irregular structures were considered. Model parameters were calculated using optimization procedures. For each PPS, state estimates were obtained combining the developed models and diffuse initialization with filtering and smoothing methods. Statistical tests were applied to objectively evaluate the performance of this method. Results: Statistical tests demonstrated that the proposed approach correctly represented more than the 75% of the database with a significance value of 0.05. In the analysis, structural estimates suitably characterized the dynamics of the PPSs. Trend estimates proved to properly represent slow long-term dynamics, whereas cycle estimates captured short-term autoregressive dependencies. Conclusions: The present study demonstrated that the proposed approach is suitable for representing and analyzing real perturbed PPSs, also allowing to extract further information related to the phonation process.Fil: Alzamendi, Gabriel Alejandro. Universidad Nacional de Entre Ríos. Facultad de Ingeniería. Departamento de Matemática e Informática. Laboratorio de Señales y Dinámicas no Lineales; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Schlotthauer, Gaston. Universidad Nacional de Entre Ríos. Facultad de Ingeniería. Departamento de Matemática e Informática. Laboratorio de Señales y Dinámicas no Lineales; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Torres, Maria Eugenia. Universidad Nacional de Entre Ríos. Facultad de Ingeniería. Departamento de Matemática e Informática. Laboratorio de Señales y Dinámicas no Lineales; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaMosby-Elsevier2015-11info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/42313Alzamendi, Gabriel Alejandro; Schlotthauer, Gaston; Torres, Maria Eugenia; State-Space Approach to Structural Representation of Perturbed Pitch Period Sequences in Voice Signals; Mosby-Elsevier; Journal Of Voice : Official Journal Of The Voice Foundation.; 29; 6; 11-2015; 682-6920892-1997CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/doi/10.1016/j.jvoice.2014.11.007info:eu-repo/semantics/altIdentifier/url/https://www.sciencedirect.com/science/article/pii/S0892199714002628info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-nd/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T10:34:07Zoai:ri.conicet.gov.ar:11336/42313instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 10:34:08.16CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
State-Space Approach to Structural Representation of Perturbed Pitch Period Sequences in Voice Signals |
title |
State-Space Approach to Structural Representation of Perturbed Pitch Period Sequences in Voice Signals |
spellingShingle |
State-Space Approach to Structural Representation of Perturbed Pitch Period Sequences in Voice Signals Alzamendi, Gabriel Alejandro Perturbed Pitch Periods Stochastic Pitch Model Jitter Structural Time-Series Analysis State-Space Models |
title_short |
State-Space Approach to Structural Representation of Perturbed Pitch Period Sequences in Voice Signals |
title_full |
State-Space Approach to Structural Representation of Perturbed Pitch Period Sequences in Voice Signals |
title_fullStr |
State-Space Approach to Structural Representation of Perturbed Pitch Period Sequences in Voice Signals |
title_full_unstemmed |
State-Space Approach to Structural Representation of Perturbed Pitch Period Sequences in Voice Signals |
title_sort |
State-Space Approach to Structural Representation of Perturbed Pitch Period Sequences in Voice Signals |
dc.creator.none.fl_str_mv |
Alzamendi, Gabriel Alejandro Schlotthauer, Gaston Torres, Maria Eugenia |
author |
Alzamendi, Gabriel Alejandro |
author_facet |
Alzamendi, Gabriel Alejandro Schlotthauer, Gaston Torres, Maria Eugenia |
author_role |
author |
author2 |
Schlotthauer, Gaston Torres, Maria Eugenia |
author2_role |
author author |
dc.subject.none.fl_str_mv |
Perturbed Pitch Periods Stochastic Pitch Model Jitter Structural Time-Series Analysis State-Space Models |
topic |
Perturbed Pitch Periods Stochastic Pitch Model Jitter Structural Time-Series Analysis State-Space Models |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/2.2 https://purl.org/becyt/ford/2 |
dc.description.none.fl_txt_mv |
Objectives: The aim of this study was to propose a state space-based approach to model perturbed pitch period sequences (PPSs), extracted from real sustained vowels, combining the principal features of disturbed real PPSs with structural analysis of stochastic time series and state space methods. Methods: The PPSs were obtained from a database composed of 53 healthy subjects. State space models were developed taking into account different structures and complexity levels. PPS features such as trend, cycle, and irregular structures were considered. Model parameters were calculated using optimization procedures. For each PPS, state estimates were obtained combining the developed models and diffuse initialization with filtering and smoothing methods. Statistical tests were applied to objectively evaluate the performance of this method. Results: Statistical tests demonstrated that the proposed approach correctly represented more than the 75% of the database with a significance value of 0.05. In the analysis, structural estimates suitably characterized the dynamics of the PPSs. Trend estimates proved to properly represent slow long-term dynamics, whereas cycle estimates captured short-term autoregressive dependencies. Conclusions: The present study demonstrated that the proposed approach is suitable for representing and analyzing real perturbed PPSs, also allowing to extract further information related to the phonation process. Fil: Alzamendi, Gabriel Alejandro. Universidad Nacional de Entre Ríos. Facultad de Ingeniería. Departamento de Matemática e Informática. Laboratorio de Señales y Dinámicas no Lineales; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina Fil: Schlotthauer, Gaston. Universidad Nacional de Entre Ríos. Facultad de Ingeniería. Departamento de Matemática e Informática. Laboratorio de Señales y Dinámicas no Lineales; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina Fil: Torres, Maria Eugenia. Universidad Nacional de Entre Ríos. Facultad de Ingeniería. Departamento de Matemática e Informática. Laboratorio de Señales y Dinámicas no Lineales; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina |
description |
Objectives: The aim of this study was to propose a state space-based approach to model perturbed pitch period sequences (PPSs), extracted from real sustained vowels, combining the principal features of disturbed real PPSs with structural analysis of stochastic time series and state space methods. Methods: The PPSs were obtained from a database composed of 53 healthy subjects. State space models were developed taking into account different structures and complexity levels. PPS features such as trend, cycle, and irregular structures were considered. Model parameters were calculated using optimization procedures. For each PPS, state estimates were obtained combining the developed models and diffuse initialization with filtering and smoothing methods. Statistical tests were applied to objectively evaluate the performance of this method. Results: Statistical tests demonstrated that the proposed approach correctly represented more than the 75% of the database with a significance value of 0.05. In the analysis, structural estimates suitably characterized the dynamics of the PPSs. Trend estimates proved to properly represent slow long-term dynamics, whereas cycle estimates captured short-term autoregressive dependencies. Conclusions: The present study demonstrated that the proposed approach is suitable for representing and analyzing real perturbed PPSs, also allowing to extract further information related to the phonation process. |
publishDate |
2015 |
dc.date.none.fl_str_mv |
2015-11 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/42313 Alzamendi, Gabriel Alejandro; Schlotthauer, Gaston; Torres, Maria Eugenia; State-Space Approach to Structural Representation of Perturbed Pitch Period Sequences in Voice Signals; Mosby-Elsevier; Journal Of Voice : Official Journal Of The Voice Foundation.; 29; 6; 11-2015; 682-692 0892-1997 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/42313 |
identifier_str_mv |
Alzamendi, Gabriel Alejandro; Schlotthauer, Gaston; Torres, Maria Eugenia; State-Space Approach to Structural Representation of Perturbed Pitch Period Sequences in Voice Signals; Mosby-Elsevier; Journal Of Voice : Official Journal Of The Voice Foundation.; 29; 6; 11-2015; 682-692 0892-1997 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/doi/10.1016/j.jvoice.2014.11.007 info:eu-repo/semantics/altIdentifier/url/https://www.sciencedirect.com/science/article/pii/S0892199714002628 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-nd/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-nd/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
Mosby-Elsevier |
publisher.none.fl_str_mv |
Mosby-Elsevier |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1844614357503180800 |
score |
13.070432 |