State-Space Approach to Structural Representation of Perturbed Pitch Period Sequences in Voice Signals

Autores
Alzamendi, Gabriel Alejandro; Schlotthauer, Gaston; Torres, Maria Eugenia
Año de publicación
2015
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
Objectives: The aim of this study was to propose a state space-based approach to model perturbed pitch period sequences (PPSs), extracted from real sustained vowels, combining the principal features of disturbed real PPSs with structural analysis of stochastic time series and state space methods. Methods: The PPSs were obtained from a database composed of 53 healthy subjects. State space models were developed taking into account different structures and complexity levels. PPS features such as trend, cycle, and irregular structures were considered. Model parameters were calculated using optimization procedures. For each PPS, state estimates were obtained combining the developed models and diffuse initialization with filtering and smoothing methods. Statistical tests were applied to objectively evaluate the performance of this method. Results: Statistical tests demonstrated that the proposed approach correctly represented more than the 75% of the database with a significance value of 0.05. In the analysis, structural estimates suitably characterized the dynamics of the PPSs. Trend estimates proved to properly represent slow long-term dynamics, whereas cycle estimates captured short-term autoregressive dependencies. Conclusions: The present study demonstrated that the proposed approach is suitable for representing and analyzing real perturbed PPSs, also allowing to extract further information related to the phonation process.
Fil: Alzamendi, Gabriel Alejandro. Universidad Nacional de Entre Ríos. Facultad de Ingeniería. Departamento de Matemática e Informática. Laboratorio de Señales y Dinámicas no Lineales; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
Fil: Schlotthauer, Gaston. Universidad Nacional de Entre Ríos. Facultad de Ingeniería. Departamento de Matemática e Informática. Laboratorio de Señales y Dinámicas no Lineales; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
Fil: Torres, Maria Eugenia. Universidad Nacional de Entre Ríos. Facultad de Ingeniería. Departamento de Matemática e Informática. Laboratorio de Señales y Dinámicas no Lineales; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
Materia
Perturbed Pitch Periods
Stochastic Pitch Model
Jitter
Structural Time-Series Analysis
State-Space Models
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by-nc-nd/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/42313

id CONICETDig_8914b4bcba8f92d4d18c15c46ca30ba5
oai_identifier_str oai:ri.conicet.gov.ar:11336/42313
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling State-Space Approach to Structural Representation of Perturbed Pitch Period Sequences in Voice SignalsAlzamendi, Gabriel AlejandroSchlotthauer, GastonTorres, Maria EugeniaPerturbed Pitch PeriodsStochastic Pitch ModelJitterStructural Time-Series AnalysisState-Space Modelshttps://purl.org/becyt/ford/2.2https://purl.org/becyt/ford/2Objectives: The aim of this study was to propose a state space-based approach to model perturbed pitch period sequences (PPSs), extracted from real sustained vowels, combining the principal features of disturbed real PPSs with structural analysis of stochastic time series and state space methods. Methods: The PPSs were obtained from a database composed of 53 healthy subjects. State space models were developed taking into account different structures and complexity levels. PPS features such as trend, cycle, and irregular structures were considered. Model parameters were calculated using optimization procedures. For each PPS, state estimates were obtained combining the developed models and diffuse initialization with filtering and smoothing methods. Statistical tests were applied to objectively evaluate the performance of this method. Results: Statistical tests demonstrated that the proposed approach correctly represented more than the 75% of the database with a significance value of 0.05. In the analysis, structural estimates suitably characterized the dynamics of the PPSs. Trend estimates proved to properly represent slow long-term dynamics, whereas cycle estimates captured short-term autoregressive dependencies. Conclusions: The present study demonstrated that the proposed approach is suitable for representing and analyzing real perturbed PPSs, also allowing to extract further information related to the phonation process.Fil: Alzamendi, Gabriel Alejandro. Universidad Nacional de Entre Ríos. Facultad de Ingeniería. Departamento de Matemática e Informática. Laboratorio de Señales y Dinámicas no Lineales; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Schlotthauer, Gaston. Universidad Nacional de Entre Ríos. Facultad de Ingeniería. Departamento de Matemática e Informática. Laboratorio de Señales y Dinámicas no Lineales; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Torres, Maria Eugenia. Universidad Nacional de Entre Ríos. Facultad de Ingeniería. Departamento de Matemática e Informática. Laboratorio de Señales y Dinámicas no Lineales; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaMosby-Elsevier2015-11info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/42313Alzamendi, Gabriel Alejandro; Schlotthauer, Gaston; Torres, Maria Eugenia; State-Space Approach to Structural Representation of Perturbed Pitch Period Sequences in Voice Signals; Mosby-Elsevier; Journal Of Voice : Official Journal Of The Voice Foundation.; 29; 6; 11-2015; 682-6920892-1997CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/doi/10.1016/j.jvoice.2014.11.007info:eu-repo/semantics/altIdentifier/url/https://www.sciencedirect.com/science/article/pii/S0892199714002628info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-nd/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T10:34:07Zoai:ri.conicet.gov.ar:11336/42313instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 10:34:08.16CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv State-Space Approach to Structural Representation of Perturbed Pitch Period Sequences in Voice Signals
title State-Space Approach to Structural Representation of Perturbed Pitch Period Sequences in Voice Signals
spellingShingle State-Space Approach to Structural Representation of Perturbed Pitch Period Sequences in Voice Signals
Alzamendi, Gabriel Alejandro
Perturbed Pitch Periods
Stochastic Pitch Model
Jitter
Structural Time-Series Analysis
State-Space Models
title_short State-Space Approach to Structural Representation of Perturbed Pitch Period Sequences in Voice Signals
title_full State-Space Approach to Structural Representation of Perturbed Pitch Period Sequences in Voice Signals
title_fullStr State-Space Approach to Structural Representation of Perturbed Pitch Period Sequences in Voice Signals
title_full_unstemmed State-Space Approach to Structural Representation of Perturbed Pitch Period Sequences in Voice Signals
title_sort State-Space Approach to Structural Representation of Perturbed Pitch Period Sequences in Voice Signals
dc.creator.none.fl_str_mv Alzamendi, Gabriel Alejandro
Schlotthauer, Gaston
Torres, Maria Eugenia
author Alzamendi, Gabriel Alejandro
author_facet Alzamendi, Gabriel Alejandro
Schlotthauer, Gaston
Torres, Maria Eugenia
author_role author
author2 Schlotthauer, Gaston
Torres, Maria Eugenia
author2_role author
author
dc.subject.none.fl_str_mv Perturbed Pitch Periods
Stochastic Pitch Model
Jitter
Structural Time-Series Analysis
State-Space Models
topic Perturbed Pitch Periods
Stochastic Pitch Model
Jitter
Structural Time-Series Analysis
State-Space Models
purl_subject.fl_str_mv https://purl.org/becyt/ford/2.2
https://purl.org/becyt/ford/2
dc.description.none.fl_txt_mv Objectives: The aim of this study was to propose a state space-based approach to model perturbed pitch period sequences (PPSs), extracted from real sustained vowels, combining the principal features of disturbed real PPSs with structural analysis of stochastic time series and state space methods. Methods: The PPSs were obtained from a database composed of 53 healthy subjects. State space models were developed taking into account different structures and complexity levels. PPS features such as trend, cycle, and irregular structures were considered. Model parameters were calculated using optimization procedures. For each PPS, state estimates were obtained combining the developed models and diffuse initialization with filtering and smoothing methods. Statistical tests were applied to objectively evaluate the performance of this method. Results: Statistical tests demonstrated that the proposed approach correctly represented more than the 75% of the database with a significance value of 0.05. In the analysis, structural estimates suitably characterized the dynamics of the PPSs. Trend estimates proved to properly represent slow long-term dynamics, whereas cycle estimates captured short-term autoregressive dependencies. Conclusions: The present study demonstrated that the proposed approach is suitable for representing and analyzing real perturbed PPSs, also allowing to extract further information related to the phonation process.
Fil: Alzamendi, Gabriel Alejandro. Universidad Nacional de Entre Ríos. Facultad de Ingeniería. Departamento de Matemática e Informática. Laboratorio de Señales y Dinámicas no Lineales; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
Fil: Schlotthauer, Gaston. Universidad Nacional de Entre Ríos. Facultad de Ingeniería. Departamento de Matemática e Informática. Laboratorio de Señales y Dinámicas no Lineales; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
Fil: Torres, Maria Eugenia. Universidad Nacional de Entre Ríos. Facultad de Ingeniería. Departamento de Matemática e Informática. Laboratorio de Señales y Dinámicas no Lineales; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
description Objectives: The aim of this study was to propose a state space-based approach to model perturbed pitch period sequences (PPSs), extracted from real sustained vowels, combining the principal features of disturbed real PPSs with structural analysis of stochastic time series and state space methods. Methods: The PPSs were obtained from a database composed of 53 healthy subjects. State space models were developed taking into account different structures and complexity levels. PPS features such as trend, cycle, and irregular structures were considered. Model parameters were calculated using optimization procedures. For each PPS, state estimates were obtained combining the developed models and diffuse initialization with filtering and smoothing methods. Statistical tests were applied to objectively evaluate the performance of this method. Results: Statistical tests demonstrated that the proposed approach correctly represented more than the 75% of the database with a significance value of 0.05. In the analysis, structural estimates suitably characterized the dynamics of the PPSs. Trend estimates proved to properly represent slow long-term dynamics, whereas cycle estimates captured short-term autoregressive dependencies. Conclusions: The present study demonstrated that the proposed approach is suitable for representing and analyzing real perturbed PPSs, also allowing to extract further information related to the phonation process.
publishDate 2015
dc.date.none.fl_str_mv 2015-11
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/42313
Alzamendi, Gabriel Alejandro; Schlotthauer, Gaston; Torres, Maria Eugenia; State-Space Approach to Structural Representation of Perturbed Pitch Period Sequences in Voice Signals; Mosby-Elsevier; Journal Of Voice : Official Journal Of The Voice Foundation.; 29; 6; 11-2015; 682-692
0892-1997
CONICET Digital
CONICET
url http://hdl.handle.net/11336/42313
identifier_str_mv Alzamendi, Gabriel Alejandro; Schlotthauer, Gaston; Torres, Maria Eugenia; State-Space Approach to Structural Representation of Perturbed Pitch Period Sequences in Voice Signals; Mosby-Elsevier; Journal Of Voice : Official Journal Of The Voice Foundation.; 29; 6; 11-2015; 682-692
0892-1997
CONICET Digital
CONICET
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/doi/10.1016/j.jvoice.2014.11.007
info:eu-repo/semantics/altIdentifier/url/https://www.sciencedirect.com/science/article/pii/S0892199714002628
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by-nc-nd/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-nd/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
application/pdf
dc.publisher.none.fl_str_mv Mosby-Elsevier
publisher.none.fl_str_mv Mosby-Elsevier
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1844614357503180800
score 13.070432