Infinite family of second-law-like inequalities

Autores
Perez Espigares, Carlos; Kolton, Alejandro Benedykt; Kurchan, Jorge
Año de publicación
2012
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
The probability distribution function for an out of equilibrium system may sometimes be approximated by a physically motivated "trial" distribution. A particularly interesting case is when a driven system (e.g., active matter) is approximated by a thermodynamic one. We show here that every set of trial distributions yields an inequality playing the role of a generalization of the second law. The better the approximation is, the more constraining the inequality becomes: this suggests a criterion for its accuracy, as well as an optimization procedure that may be implemented numerically and even experimentally. The fluctuation relation behind this inequality, a natural and practical extension of the Hatano-Sasa theorem, does not rely on the a priori knowledge of the stationary probability distribution.
Fil: Perez Espigares, Carlos. Universidad de Granada. Facultad de Ciencias. Departamento de Electromagnetismo y Física de la Materia. Instituto "Carlos I" de Física Teórica y Computacional; España
Fil: Kolton, Alejandro Benedykt. Comisión Nacional de Energía Atómica. Gerencia del Área de Energía Nuclear; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
Fil: Kurchan, Jorge. Centre National de la Recherche Scientifique. Laboratoire Pmmh-umr 7636; Francia
Materia
Irreversible thermodynamics
Statistical mechanics
Fluctuation phenomena
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/195927

id CONICETDig_20b2e07063f7dda6968c1e482bb3770c
oai_identifier_str oai:ri.conicet.gov.ar:11336/195927
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling Infinite family of second-law-like inequalitiesPerez Espigares, CarlosKolton, Alejandro BenedyktKurchan, JorgeIrreversible thermodynamicsStatistical mechanicsFluctuation phenomenahttps://purl.org/becyt/ford/1.3https://purl.org/becyt/ford/1The probability distribution function for an out of equilibrium system may sometimes be approximated by a physically motivated "trial" distribution. A particularly interesting case is when a driven system (e.g., active matter) is approximated by a thermodynamic one. We show here that every set of trial distributions yields an inequality playing the role of a generalization of the second law. The better the approximation is, the more constraining the inequality becomes: this suggests a criterion for its accuracy, as well as an optimization procedure that may be implemented numerically and even experimentally. The fluctuation relation behind this inequality, a natural and practical extension of the Hatano-Sasa theorem, does not rely on the a priori knowledge of the stationary probability distribution.Fil: Perez Espigares, Carlos. Universidad de Granada. Facultad de Ciencias. Departamento de Electromagnetismo y Física de la Materia. Instituto "Carlos I" de Física Teórica y Computacional; EspañaFil: Kolton, Alejandro Benedykt. Comisión Nacional de Energía Atómica. Gerencia del Área de Energía Nuclear; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Kurchan, Jorge. Centre National de la Recherche Scientifique. Laboratoire Pmmh-umr 7636; FranciaAmerican Physical Society2012-03info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/195927Perez Espigares, Carlos; Kolton, Alejandro Benedykt; Kurchan, Jorge; Infinite family of second-law-like inequalities; American Physical Society; Physical Review E: Statistical, Nonlinear and Soft Matter Physics; 85; 1; 3-2012; 31135-311431063-651XCONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/http://link.aps.org/doi/10.1103/PhysRevE.85.031135info:eu-repo/semantics/altIdentifier/doi/10.1103/PhysRevE.85.031135info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T09:33:15Zoai:ri.conicet.gov.ar:11336/195927instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 09:33:15.519CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv Infinite family of second-law-like inequalities
title Infinite family of second-law-like inequalities
spellingShingle Infinite family of second-law-like inequalities
Perez Espigares, Carlos
Irreversible thermodynamics
Statistical mechanics
Fluctuation phenomena
title_short Infinite family of second-law-like inequalities
title_full Infinite family of second-law-like inequalities
title_fullStr Infinite family of second-law-like inequalities
title_full_unstemmed Infinite family of second-law-like inequalities
title_sort Infinite family of second-law-like inequalities
dc.creator.none.fl_str_mv Perez Espigares, Carlos
Kolton, Alejandro Benedykt
Kurchan, Jorge
author Perez Espigares, Carlos
author_facet Perez Espigares, Carlos
Kolton, Alejandro Benedykt
Kurchan, Jorge
author_role author
author2 Kolton, Alejandro Benedykt
Kurchan, Jorge
author2_role author
author
dc.subject.none.fl_str_mv Irreversible thermodynamics
Statistical mechanics
Fluctuation phenomena
topic Irreversible thermodynamics
Statistical mechanics
Fluctuation phenomena
purl_subject.fl_str_mv https://purl.org/becyt/ford/1.3
https://purl.org/becyt/ford/1
dc.description.none.fl_txt_mv The probability distribution function for an out of equilibrium system may sometimes be approximated by a physically motivated "trial" distribution. A particularly interesting case is when a driven system (e.g., active matter) is approximated by a thermodynamic one. We show here that every set of trial distributions yields an inequality playing the role of a generalization of the second law. The better the approximation is, the more constraining the inequality becomes: this suggests a criterion for its accuracy, as well as an optimization procedure that may be implemented numerically and even experimentally. The fluctuation relation behind this inequality, a natural and practical extension of the Hatano-Sasa theorem, does not rely on the a priori knowledge of the stationary probability distribution.
Fil: Perez Espigares, Carlos. Universidad de Granada. Facultad de Ciencias. Departamento de Electromagnetismo y Física de la Materia. Instituto "Carlos I" de Física Teórica y Computacional; España
Fil: Kolton, Alejandro Benedykt. Comisión Nacional de Energía Atómica. Gerencia del Área de Energía Nuclear; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
Fil: Kurchan, Jorge. Centre National de la Recherche Scientifique. Laboratoire Pmmh-umr 7636; Francia
description The probability distribution function for an out of equilibrium system may sometimes be approximated by a physically motivated "trial" distribution. A particularly interesting case is when a driven system (e.g., active matter) is approximated by a thermodynamic one. We show here that every set of trial distributions yields an inequality playing the role of a generalization of the second law. The better the approximation is, the more constraining the inequality becomes: this suggests a criterion for its accuracy, as well as an optimization procedure that may be implemented numerically and even experimentally. The fluctuation relation behind this inequality, a natural and practical extension of the Hatano-Sasa theorem, does not rely on the a priori knowledge of the stationary probability distribution.
publishDate 2012
dc.date.none.fl_str_mv 2012-03
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/195927
Perez Espigares, Carlos; Kolton, Alejandro Benedykt; Kurchan, Jorge; Infinite family of second-law-like inequalities; American Physical Society; Physical Review E: Statistical, Nonlinear and Soft Matter Physics; 85; 1; 3-2012; 31135-31143
1063-651X
CONICET Digital
CONICET
url http://hdl.handle.net/11336/195927
identifier_str_mv Perez Espigares, Carlos; Kolton, Alejandro Benedykt; Kurchan, Jorge; Infinite family of second-law-like inequalities; American Physical Society; Physical Review E: Statistical, Nonlinear and Soft Matter Physics; 85; 1; 3-2012; 31135-31143
1063-651X
CONICET Digital
CONICET
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/url/http://link.aps.org/doi/10.1103/PhysRevE.85.031135
info:eu-repo/semantics/altIdentifier/doi/10.1103/PhysRevE.85.031135
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
application/pdf
dc.publisher.none.fl_str_mv American Physical Society
publisher.none.fl_str_mv American Physical Society
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1844613020468117504
score 13.070432