Temperature dependence of phase diagrams and dynamics in nanocrystal assembly by solvent evaporation

Autores
Upah, Alex; Missoni, Leandro Luis; Tagliazucchi, Mario Eugenio; Travesset, Alex
Año de publicación
2025
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
We provide a systematic study of the phase diagram and dynamics for single component nanocrystals(NCs) by a combination of a self-consistent mean-field molecular theory (MOLT-CF) and moleculardynamics (MD) simulations. We first compute several thermodynamic functions (free energy, entropy,coefficient of thermal expansion and bulk modulus) as a function of temperature by both MOLT-CF andMD. While MOLT-CF correctly captures the trends with temperature, the predicted coefficients ofthermal expansion and bulk moduli display quantitative deviations from MD and experiments, which wetrace back to the mean-field treatment of attractions in MOLT-CF. We further characterize the phasediagram and calculate the dependence on temperature of the bcc to fcc transition. Our results revealthat differences in entropic and enthalpic contributions to the free energy oscillate as a function of NCseparation and are correlated to a geometric quantity: the volume of overlap between the ligand layersin different particles. In this way, we generally show that bcc is favored by enthalpy, while fcc is byentropy, in agreement with previous experimental evidence of fcc stabilization with increasingtemperature, but contrary to what is expected from simpler particle models, where bcc is alwaysentropically favored. We also show that the lowest relaxation times drastically increase in the lateststages of solvent evaporation. Overall, our results demonstrate that MOLT-CF provides an adequatequantitative model describing all phenomenology in single component NCs.
Fil: Upah, Alex. University of Iowa; Estados Unidos
Fil: Missoni, Leandro Luis. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Química, Física de los Materiales, Medioambiente y Energía. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Química, Física de los Materiales, Medioambiente y Energía; Argentina
Fil: Tagliazucchi, Mario Eugenio. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Química, Física de los Materiales, Medioambiente y Energía. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Química, Física de los Materiales, Medioambiente y Energía; Argentina
Fil: Travesset, Alex. University of Iowa; Estados Unidos
Materia
NANOPARTICLE SUPERLATTICES
THERMODYNAMICS
MOLECULAR DYNAMICS
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by-nc/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/279148

id CONICETDig_88ae7a0e20d2ac08d383b95ceb81eeaf
oai_identifier_str oai:ri.conicet.gov.ar:11336/279148
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling Temperature dependence of phase diagrams and dynamics in nanocrystal assembly by solvent evaporationUpah, AlexMissoni, Leandro LuisTagliazucchi, Mario EugenioTravesset, AlexNANOPARTICLE SUPERLATTICESTHERMODYNAMICSMOLECULAR DYNAMICShttps://purl.org/becyt/ford/1.4https://purl.org/becyt/ford/1We provide a systematic study of the phase diagram and dynamics for single component nanocrystals(NCs) by a combination of a self-consistent mean-field molecular theory (MOLT-CF) and moleculardynamics (MD) simulations. We first compute several thermodynamic functions (free energy, entropy,coefficient of thermal expansion and bulk modulus) as a function of temperature by both MOLT-CF andMD. While MOLT-CF correctly captures the trends with temperature, the predicted coefficients ofthermal expansion and bulk moduli display quantitative deviations from MD and experiments, which wetrace back to the mean-field treatment of attractions in MOLT-CF. We further characterize the phasediagram and calculate the dependence on temperature of the bcc to fcc transition. Our results revealthat differences in entropic and enthalpic contributions to the free energy oscillate as a function of NCseparation and are correlated to a geometric quantity: the volume of overlap between the ligand layersin different particles. In this way, we generally show that bcc is favored by enthalpy, while fcc is byentropy, in agreement with previous experimental evidence of fcc stabilization with increasingtemperature, but contrary to what is expected from simpler particle models, where bcc is alwaysentropically favored. We also show that the lowest relaxation times drastically increase in the lateststages of solvent evaporation. Overall, our results demonstrate that MOLT-CF provides an adequatequantitative model describing all phenomenology in single component NCs.Fil: Upah, Alex. University of Iowa; Estados UnidosFil: Missoni, Leandro Luis. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Química, Física de los Materiales, Medioambiente y Energía. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Química, Física de los Materiales, Medioambiente y Energía; ArgentinaFil: Tagliazucchi, Mario Eugenio. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Química, Física de los Materiales, Medioambiente y Energía. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Química, Física de los Materiales, Medioambiente y Energía; ArgentinaFil: Travesset, Alex. University of Iowa; Estados UnidosRoyal Society of Chemistry2025-01info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/279148Upah, Alex; Missoni, Leandro Luis; Tagliazucchi, Mario Eugenio; Travesset, Alex; Temperature dependence of phase diagrams and dynamics in nanocrystal assembly by solvent evaporation; Royal Society of Chemistry; Soft Matter; 21; 9; 1-2025; 1686-16981744-683XCONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/https://xlink.rsc.org/?DOI=D4SM01265Hinfo:eu-repo/semantics/altIdentifier/doi/10.1039/D4SM01265Hinfo:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2026-01-14T12:12:14Zoai:ri.conicet.gov.ar:11336/279148instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982026-01-14 12:12:14.646CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv Temperature dependence of phase diagrams and dynamics in nanocrystal assembly by solvent evaporation
title Temperature dependence of phase diagrams and dynamics in nanocrystal assembly by solvent evaporation
spellingShingle Temperature dependence of phase diagrams and dynamics in nanocrystal assembly by solvent evaporation
Upah, Alex
NANOPARTICLE SUPERLATTICES
THERMODYNAMICS
MOLECULAR DYNAMICS
title_short Temperature dependence of phase diagrams and dynamics in nanocrystal assembly by solvent evaporation
title_full Temperature dependence of phase diagrams and dynamics in nanocrystal assembly by solvent evaporation
title_fullStr Temperature dependence of phase diagrams and dynamics in nanocrystal assembly by solvent evaporation
title_full_unstemmed Temperature dependence of phase diagrams and dynamics in nanocrystal assembly by solvent evaporation
title_sort Temperature dependence of phase diagrams and dynamics in nanocrystal assembly by solvent evaporation
dc.creator.none.fl_str_mv Upah, Alex
Missoni, Leandro Luis
Tagliazucchi, Mario Eugenio
Travesset, Alex
author Upah, Alex
author_facet Upah, Alex
Missoni, Leandro Luis
Tagliazucchi, Mario Eugenio
Travesset, Alex
author_role author
author2 Missoni, Leandro Luis
Tagliazucchi, Mario Eugenio
Travesset, Alex
author2_role author
author
author
dc.subject.none.fl_str_mv NANOPARTICLE SUPERLATTICES
THERMODYNAMICS
MOLECULAR DYNAMICS
topic NANOPARTICLE SUPERLATTICES
THERMODYNAMICS
MOLECULAR DYNAMICS
purl_subject.fl_str_mv https://purl.org/becyt/ford/1.4
https://purl.org/becyt/ford/1
dc.description.none.fl_txt_mv We provide a systematic study of the phase diagram and dynamics for single component nanocrystals(NCs) by a combination of a self-consistent mean-field molecular theory (MOLT-CF) and moleculardynamics (MD) simulations. We first compute several thermodynamic functions (free energy, entropy,coefficient of thermal expansion and bulk modulus) as a function of temperature by both MOLT-CF andMD. While MOLT-CF correctly captures the trends with temperature, the predicted coefficients ofthermal expansion and bulk moduli display quantitative deviations from MD and experiments, which wetrace back to the mean-field treatment of attractions in MOLT-CF. We further characterize the phasediagram and calculate the dependence on temperature of the bcc to fcc transition. Our results revealthat differences in entropic and enthalpic contributions to the free energy oscillate as a function of NCseparation and are correlated to a geometric quantity: the volume of overlap between the ligand layersin different particles. In this way, we generally show that bcc is favored by enthalpy, while fcc is byentropy, in agreement with previous experimental evidence of fcc stabilization with increasingtemperature, but contrary to what is expected from simpler particle models, where bcc is alwaysentropically favored. We also show that the lowest relaxation times drastically increase in the lateststages of solvent evaporation. Overall, our results demonstrate that MOLT-CF provides an adequatequantitative model describing all phenomenology in single component NCs.
Fil: Upah, Alex. University of Iowa; Estados Unidos
Fil: Missoni, Leandro Luis. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Química, Física de los Materiales, Medioambiente y Energía. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Química, Física de los Materiales, Medioambiente y Energía; Argentina
Fil: Tagliazucchi, Mario Eugenio. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Química, Física de los Materiales, Medioambiente y Energía. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Química, Física de los Materiales, Medioambiente y Energía; Argentina
Fil: Travesset, Alex. University of Iowa; Estados Unidos
description We provide a systematic study of the phase diagram and dynamics for single component nanocrystals(NCs) by a combination of a self-consistent mean-field molecular theory (MOLT-CF) and moleculardynamics (MD) simulations. We first compute several thermodynamic functions (free energy, entropy,coefficient of thermal expansion and bulk modulus) as a function of temperature by both MOLT-CF andMD. While MOLT-CF correctly captures the trends with temperature, the predicted coefficients ofthermal expansion and bulk moduli display quantitative deviations from MD and experiments, which wetrace back to the mean-field treatment of attractions in MOLT-CF. We further characterize the phasediagram and calculate the dependence on temperature of the bcc to fcc transition. Our results revealthat differences in entropic and enthalpic contributions to the free energy oscillate as a function of NCseparation and are correlated to a geometric quantity: the volume of overlap between the ligand layersin different particles. In this way, we generally show that bcc is favored by enthalpy, while fcc is byentropy, in agreement with previous experimental evidence of fcc stabilization with increasingtemperature, but contrary to what is expected from simpler particle models, where bcc is alwaysentropically favored. We also show that the lowest relaxation times drastically increase in the lateststages of solvent evaporation. Overall, our results demonstrate that MOLT-CF provides an adequatequantitative model describing all phenomenology in single component NCs.
publishDate 2025
dc.date.none.fl_str_mv 2025-01
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/279148
Upah, Alex; Missoni, Leandro Luis; Tagliazucchi, Mario Eugenio; Travesset, Alex; Temperature dependence of phase diagrams and dynamics in nanocrystal assembly by solvent evaporation; Royal Society of Chemistry; Soft Matter; 21; 9; 1-2025; 1686-1698
1744-683X
CONICET Digital
CONICET
url http://hdl.handle.net/11336/279148
identifier_str_mv Upah, Alex; Missoni, Leandro Luis; Tagliazucchi, Mario Eugenio; Travesset, Alex; Temperature dependence of phase diagrams and dynamics in nanocrystal assembly by solvent evaporation; Royal Society of Chemistry; Soft Matter; 21; 9; 1-2025; 1686-1698
1744-683X
CONICET Digital
CONICET
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/url/https://xlink.rsc.org/?DOI=D4SM01265H
info:eu-repo/semantics/altIdentifier/doi/10.1039/D4SM01265H
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by-nc/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
application/pdf
dc.publisher.none.fl_str_mv Royal Society of Chemistry
publisher.none.fl_str_mv Royal Society of Chemistry
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1854321508447420416
score 13.02893