Temperature dependence of phase diagrams and dynamics in nanocrystal assembly by solvent evaporation
- Autores
- Upah, Alex; Missoni, Leandro Luis; Tagliazucchi, Mario Eugenio; Travesset, Alex
- Año de publicación
- 2025
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- We provide a systematic study of the phase diagram and dynamics for single component nanocrystals(NCs) by a combination of a self-consistent mean-field molecular theory (MOLT-CF) and moleculardynamics (MD) simulations. We first compute several thermodynamic functions (free energy, entropy,coefficient of thermal expansion and bulk modulus) as a function of temperature by both MOLT-CF andMD. While MOLT-CF correctly captures the trends with temperature, the predicted coefficients ofthermal expansion and bulk moduli display quantitative deviations from MD and experiments, which wetrace back to the mean-field treatment of attractions in MOLT-CF. We further characterize the phasediagram and calculate the dependence on temperature of the bcc to fcc transition. Our results revealthat differences in entropic and enthalpic contributions to the free energy oscillate as a function of NCseparation and are correlated to a geometric quantity: the volume of overlap between the ligand layersin different particles. In this way, we generally show that bcc is favored by enthalpy, while fcc is byentropy, in agreement with previous experimental evidence of fcc stabilization with increasingtemperature, but contrary to what is expected from simpler particle models, where bcc is alwaysentropically favored. We also show that the lowest relaxation times drastically increase in the lateststages of solvent evaporation. Overall, our results demonstrate that MOLT-CF provides an adequatequantitative model describing all phenomenology in single component NCs.
Fil: Upah, Alex. University of Iowa; Estados Unidos
Fil: Missoni, Leandro Luis. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Química, Física de los Materiales, Medioambiente y Energía. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Química, Física de los Materiales, Medioambiente y Energía; Argentina
Fil: Tagliazucchi, Mario Eugenio. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Química, Física de los Materiales, Medioambiente y Energía. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Química, Física de los Materiales, Medioambiente y Energía; Argentina
Fil: Travesset, Alex. University of Iowa; Estados Unidos - Materia
-
NANOPARTICLE SUPERLATTICES
THERMODYNAMICS
MOLECULAR DYNAMICS - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc/2.5/ar/
- Repositorio
.jpg)
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/279148
Ver los metadatos del registro completo
| id |
CONICETDig_88ae7a0e20d2ac08d383b95ceb81eeaf |
|---|---|
| oai_identifier_str |
oai:ri.conicet.gov.ar:11336/279148 |
| network_acronym_str |
CONICETDig |
| repository_id_str |
3498 |
| network_name_str |
CONICET Digital (CONICET) |
| spelling |
Temperature dependence of phase diagrams and dynamics in nanocrystal assembly by solvent evaporationUpah, AlexMissoni, Leandro LuisTagliazucchi, Mario EugenioTravesset, AlexNANOPARTICLE SUPERLATTICESTHERMODYNAMICSMOLECULAR DYNAMICShttps://purl.org/becyt/ford/1.4https://purl.org/becyt/ford/1We provide a systematic study of the phase diagram and dynamics for single component nanocrystals(NCs) by a combination of a self-consistent mean-field molecular theory (MOLT-CF) and moleculardynamics (MD) simulations. We first compute several thermodynamic functions (free energy, entropy,coefficient of thermal expansion and bulk modulus) as a function of temperature by both MOLT-CF andMD. While MOLT-CF correctly captures the trends with temperature, the predicted coefficients ofthermal expansion and bulk moduli display quantitative deviations from MD and experiments, which wetrace back to the mean-field treatment of attractions in MOLT-CF. We further characterize the phasediagram and calculate the dependence on temperature of the bcc to fcc transition. Our results revealthat differences in entropic and enthalpic contributions to the free energy oscillate as a function of NCseparation and are correlated to a geometric quantity: the volume of overlap between the ligand layersin different particles. In this way, we generally show that bcc is favored by enthalpy, while fcc is byentropy, in agreement with previous experimental evidence of fcc stabilization with increasingtemperature, but contrary to what is expected from simpler particle models, where bcc is alwaysentropically favored. We also show that the lowest relaxation times drastically increase in the lateststages of solvent evaporation. Overall, our results demonstrate that MOLT-CF provides an adequatequantitative model describing all phenomenology in single component NCs.Fil: Upah, Alex. University of Iowa; Estados UnidosFil: Missoni, Leandro Luis. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Química, Física de los Materiales, Medioambiente y Energía. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Química, Física de los Materiales, Medioambiente y Energía; ArgentinaFil: Tagliazucchi, Mario Eugenio. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Química, Física de los Materiales, Medioambiente y Energía. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Química, Física de los Materiales, Medioambiente y Energía; ArgentinaFil: Travesset, Alex. University of Iowa; Estados UnidosRoyal Society of Chemistry2025-01info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/279148Upah, Alex; Missoni, Leandro Luis; Tagliazucchi, Mario Eugenio; Travesset, Alex; Temperature dependence of phase diagrams and dynamics in nanocrystal assembly by solvent evaporation; Royal Society of Chemistry; Soft Matter; 21; 9; 1-2025; 1686-16981744-683XCONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/https://xlink.rsc.org/?DOI=D4SM01265Hinfo:eu-repo/semantics/altIdentifier/doi/10.1039/D4SM01265Hinfo:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2026-01-14T12:12:14Zoai:ri.conicet.gov.ar:11336/279148instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982026-01-14 12:12:14.646CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
| dc.title.none.fl_str_mv |
Temperature dependence of phase diagrams and dynamics in nanocrystal assembly by solvent evaporation |
| title |
Temperature dependence of phase diagrams and dynamics in nanocrystal assembly by solvent evaporation |
| spellingShingle |
Temperature dependence of phase diagrams and dynamics in nanocrystal assembly by solvent evaporation Upah, Alex NANOPARTICLE SUPERLATTICES THERMODYNAMICS MOLECULAR DYNAMICS |
| title_short |
Temperature dependence of phase diagrams and dynamics in nanocrystal assembly by solvent evaporation |
| title_full |
Temperature dependence of phase diagrams and dynamics in nanocrystal assembly by solvent evaporation |
| title_fullStr |
Temperature dependence of phase diagrams and dynamics in nanocrystal assembly by solvent evaporation |
| title_full_unstemmed |
Temperature dependence of phase diagrams and dynamics in nanocrystal assembly by solvent evaporation |
| title_sort |
Temperature dependence of phase diagrams and dynamics in nanocrystal assembly by solvent evaporation |
| dc.creator.none.fl_str_mv |
Upah, Alex Missoni, Leandro Luis Tagliazucchi, Mario Eugenio Travesset, Alex |
| author |
Upah, Alex |
| author_facet |
Upah, Alex Missoni, Leandro Luis Tagliazucchi, Mario Eugenio Travesset, Alex |
| author_role |
author |
| author2 |
Missoni, Leandro Luis Tagliazucchi, Mario Eugenio Travesset, Alex |
| author2_role |
author author author |
| dc.subject.none.fl_str_mv |
NANOPARTICLE SUPERLATTICES THERMODYNAMICS MOLECULAR DYNAMICS |
| topic |
NANOPARTICLE SUPERLATTICES THERMODYNAMICS MOLECULAR DYNAMICS |
| purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.4 https://purl.org/becyt/ford/1 |
| dc.description.none.fl_txt_mv |
We provide a systematic study of the phase diagram and dynamics for single component nanocrystals(NCs) by a combination of a self-consistent mean-field molecular theory (MOLT-CF) and moleculardynamics (MD) simulations. We first compute several thermodynamic functions (free energy, entropy,coefficient of thermal expansion and bulk modulus) as a function of temperature by both MOLT-CF andMD. While MOLT-CF correctly captures the trends with temperature, the predicted coefficients ofthermal expansion and bulk moduli display quantitative deviations from MD and experiments, which wetrace back to the mean-field treatment of attractions in MOLT-CF. We further characterize the phasediagram and calculate the dependence on temperature of the bcc to fcc transition. Our results revealthat differences in entropic and enthalpic contributions to the free energy oscillate as a function of NCseparation and are correlated to a geometric quantity: the volume of overlap between the ligand layersin different particles. In this way, we generally show that bcc is favored by enthalpy, while fcc is byentropy, in agreement with previous experimental evidence of fcc stabilization with increasingtemperature, but contrary to what is expected from simpler particle models, where bcc is alwaysentropically favored. We also show that the lowest relaxation times drastically increase in the lateststages of solvent evaporation. Overall, our results demonstrate that MOLT-CF provides an adequatequantitative model describing all phenomenology in single component NCs. Fil: Upah, Alex. University of Iowa; Estados Unidos Fil: Missoni, Leandro Luis. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Química, Física de los Materiales, Medioambiente y Energía. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Química, Física de los Materiales, Medioambiente y Energía; Argentina Fil: Tagliazucchi, Mario Eugenio. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Química, Física de los Materiales, Medioambiente y Energía. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Química, Física de los Materiales, Medioambiente y Energía; Argentina Fil: Travesset, Alex. University of Iowa; Estados Unidos |
| description |
We provide a systematic study of the phase diagram and dynamics for single component nanocrystals(NCs) by a combination of a self-consistent mean-field molecular theory (MOLT-CF) and moleculardynamics (MD) simulations. We first compute several thermodynamic functions (free energy, entropy,coefficient of thermal expansion and bulk modulus) as a function of temperature by both MOLT-CF andMD. While MOLT-CF correctly captures the trends with temperature, the predicted coefficients ofthermal expansion and bulk moduli display quantitative deviations from MD and experiments, which wetrace back to the mean-field treatment of attractions in MOLT-CF. We further characterize the phasediagram and calculate the dependence on temperature of the bcc to fcc transition. Our results revealthat differences in entropic and enthalpic contributions to the free energy oscillate as a function of NCseparation and are correlated to a geometric quantity: the volume of overlap between the ligand layersin different particles. In this way, we generally show that bcc is favored by enthalpy, while fcc is byentropy, in agreement with previous experimental evidence of fcc stabilization with increasingtemperature, but contrary to what is expected from simpler particle models, where bcc is alwaysentropically favored. We also show that the lowest relaxation times drastically increase in the lateststages of solvent evaporation. Overall, our results demonstrate that MOLT-CF provides an adequatequantitative model describing all phenomenology in single component NCs. |
| publishDate |
2025 |
| dc.date.none.fl_str_mv |
2025-01 |
| dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
| format |
article |
| status_str |
publishedVersion |
| dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/279148 Upah, Alex; Missoni, Leandro Luis; Tagliazucchi, Mario Eugenio; Travesset, Alex; Temperature dependence of phase diagrams and dynamics in nanocrystal assembly by solvent evaporation; Royal Society of Chemistry; Soft Matter; 21; 9; 1-2025; 1686-1698 1744-683X CONICET Digital CONICET |
| url |
http://hdl.handle.net/11336/279148 |
| identifier_str_mv |
Upah, Alex; Missoni, Leandro Luis; Tagliazucchi, Mario Eugenio; Travesset, Alex; Temperature dependence of phase diagrams and dynamics in nanocrystal assembly by solvent evaporation; Royal Society of Chemistry; Soft Matter; 21; 9; 1-2025; 1686-1698 1744-683X CONICET Digital CONICET |
| dc.language.none.fl_str_mv |
eng |
| language |
eng |
| dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/url/https://xlink.rsc.org/?DOI=D4SM01265H info:eu-repo/semantics/altIdentifier/doi/10.1039/D4SM01265H |
| dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc/2.5/ar/ |
| eu_rights_str_mv |
openAccess |
| rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc/2.5/ar/ |
| dc.format.none.fl_str_mv |
application/pdf application/pdf application/pdf |
| dc.publisher.none.fl_str_mv |
Royal Society of Chemistry |
| publisher.none.fl_str_mv |
Royal Society of Chemistry |
| dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
| reponame_str |
CONICET Digital (CONICET) |
| collection |
CONICET Digital (CONICET) |
| instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
| repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
| repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
| _version_ |
1854321508447420416 |
| score |
13.02893 |