Yaglom limit via Holley inequality
- Autores
- Ferrari, Pablo Augusto; Trivellato Rolla, Leonardo
- Año de publicación
- 2015
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- Let SS be a countable set provided with a partial order and a minimal element. Consider a Markov chain on S∪{0}S∪{0} absorbed at 00 with a quasi-stationary distribution. We use Holley inequality to obtain sufficient conditions under which the following hold. The trajectory of the chain starting from the minimal state is stochastically dominated by the trajectory of the chain starting from any probability on SS, when both are conditioned to nonabsorption until a certain time. Moreover, the Yaglom limit corresponding to this deterministic initial condition is the unique minimal quasi-stationary distribution in the sense of stochastic order. As an application, we provide new proofs to classical results in the field.
Fil: Ferrari, Pablo Augusto. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas "Luis A. Santaló". Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Investigaciones Matemáticas "Luis A. Santaló"; Argentina
Fil: Trivellato Rolla, Leonardo. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas "Luis A. Santaló". Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Investigaciones Matemáticas "Luis A. Santaló"; Argentina - Materia
-
Yaglom Limit
Holley Inequality - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/19357
Ver los metadatos del registro completo
id |
CONICETDig_87fc875fbf1966ce5f1c58f3901c3926 |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/19357 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Yaglom limit via Holley inequalityFerrari, Pablo AugustoTrivellato Rolla, LeonardoYaglom LimitHolley Inequalityhttps://purl.org/becyt/ford/1.1https://purl.org/becyt/ford/1Let SS be a countable set provided with a partial order and a minimal element. Consider a Markov chain on S∪{0}S∪{0} absorbed at 00 with a quasi-stationary distribution. We use Holley inequality to obtain sufficient conditions under which the following hold. The trajectory of the chain starting from the minimal state is stochastically dominated by the trajectory of the chain starting from any probability on SS, when both are conditioned to nonabsorption until a certain time. Moreover, the Yaglom limit corresponding to this deterministic initial condition is the unique minimal quasi-stationary distribution in the sense of stochastic order. As an application, we provide new proofs to classical results in the field.Fil: Ferrari, Pablo Augusto. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas "Luis A. Santaló". Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Investigaciones Matemáticas "Luis A. Santaló"; ArgentinaFil: Trivellato Rolla, Leonardo. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas "Luis A. Santaló". Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Investigaciones Matemáticas "Luis A. Santaló"; ArgentinaBrazilian Statistical Association2015info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/19357Ferrari, Pablo Augusto; Trivellato Rolla, Leonardo; Yaglom limit via Holley inequality; Brazilian Statistical Association; Brazilian Journal Of Probability And Statistics; 29; 2; -1-2015; 413-4230103-0752CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/doi/10.1214/14-BJPS269info:eu-repo/semantics/altIdentifier/url/http://projecteuclid.org/euclid.bjps/1429105595info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T09:34:37Zoai:ri.conicet.gov.ar:11336/19357instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 09:34:37.484CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Yaglom limit via Holley inequality |
title |
Yaglom limit via Holley inequality |
spellingShingle |
Yaglom limit via Holley inequality Ferrari, Pablo Augusto Yaglom Limit Holley Inequality |
title_short |
Yaglom limit via Holley inequality |
title_full |
Yaglom limit via Holley inequality |
title_fullStr |
Yaglom limit via Holley inequality |
title_full_unstemmed |
Yaglom limit via Holley inequality |
title_sort |
Yaglom limit via Holley inequality |
dc.creator.none.fl_str_mv |
Ferrari, Pablo Augusto Trivellato Rolla, Leonardo |
author |
Ferrari, Pablo Augusto |
author_facet |
Ferrari, Pablo Augusto Trivellato Rolla, Leonardo |
author_role |
author |
author2 |
Trivellato Rolla, Leonardo |
author2_role |
author |
dc.subject.none.fl_str_mv |
Yaglom Limit Holley Inequality |
topic |
Yaglom Limit Holley Inequality |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.1 https://purl.org/becyt/ford/1 |
dc.description.none.fl_txt_mv |
Let SS be a countable set provided with a partial order and a minimal element. Consider a Markov chain on S∪{0}S∪{0} absorbed at 00 with a quasi-stationary distribution. We use Holley inequality to obtain sufficient conditions under which the following hold. The trajectory of the chain starting from the minimal state is stochastically dominated by the trajectory of the chain starting from any probability on SS, when both are conditioned to nonabsorption until a certain time. Moreover, the Yaglom limit corresponding to this deterministic initial condition is the unique minimal quasi-stationary distribution in the sense of stochastic order. As an application, we provide new proofs to classical results in the field. Fil: Ferrari, Pablo Augusto. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas "Luis A. Santaló". Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Investigaciones Matemáticas "Luis A. Santaló"; Argentina Fil: Trivellato Rolla, Leonardo. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas "Luis A. Santaló". Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Investigaciones Matemáticas "Luis A. Santaló"; Argentina |
description |
Let SS be a countable set provided with a partial order and a minimal element. Consider a Markov chain on S∪{0}S∪{0} absorbed at 00 with a quasi-stationary distribution. We use Holley inequality to obtain sufficient conditions under which the following hold. The trajectory of the chain starting from the minimal state is stochastically dominated by the trajectory of the chain starting from any probability on SS, when both are conditioned to nonabsorption until a certain time. Moreover, the Yaglom limit corresponding to this deterministic initial condition is the unique minimal quasi-stationary distribution in the sense of stochastic order. As an application, we provide new proofs to classical results in the field. |
publishDate |
2015 |
dc.date.none.fl_str_mv |
2015 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/19357 Ferrari, Pablo Augusto; Trivellato Rolla, Leonardo; Yaglom limit via Holley inequality; Brazilian Statistical Association; Brazilian Journal Of Probability And Statistics; 29; 2; -1-2015; 413-423 0103-0752 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/19357 |
identifier_str_mv |
Ferrari, Pablo Augusto; Trivellato Rolla, Leonardo; Yaglom limit via Holley inequality; Brazilian Statistical Association; Brazilian Journal Of Probability And Statistics; 29; 2; -1-2015; 413-423 0103-0752 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/doi/10.1214/14-BJPS269 info:eu-repo/semantics/altIdentifier/url/http://projecteuclid.org/euclid.bjps/1429105595 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
Brazilian Statistical Association |
publisher.none.fl_str_mv |
Brazilian Statistical Association |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1844613072344317952 |
score |
13.070432 |