Stability analysis of adaptive filters with regression vector nonlinearities
- Autores
- Rey Vega, Leonardo Javier; Rey, Hernan; Benesty, Jacob
- Año de publicación
- 2011
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- We present a unified framework to analyze the mean and mean-square stability of a large class of adaptive filters. We do this without obtaining a full transient model, allowing us to acquire sufficient conditions on the stability without assuming a given statistical distribution for the input regressors. We also apply the proposed framework to some popular adaptive filtering schemes, showing that in some cases the sufficient conditions derived are very tight and even necessary too.
Fil: Rey Vega, Leonardo Javier. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad de Buenos Aires; Argentina
Fil: Rey, Hernan. Universidad de Buenos Aires; Argentina
Fil: Benesty, Jacob. Centre Armand-frappier Santé Biotechnologie ; Institut National de Recherche Scientifique; . Université du Québec a Montreal; Canadá - Materia
-
ADAPTIVE FILTERS
MEAN STABILITY
MEAN-SQUARE STABILITY
STEP-SIZE PARAMETER - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/192917
Ver los metadatos del registro completo
id |
CONICETDig_87d7a6e9bd9bf12ea3f625d720ef1c52 |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/192917 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Stability analysis of adaptive filters with regression vector nonlinearitiesRey Vega, Leonardo JavierRey, HernanBenesty, JacobADAPTIVE FILTERSMEAN STABILITYMEAN-SQUARE STABILITYSTEP-SIZE PARAMETERhttps://purl.org/becyt/ford/2.2https://purl.org/becyt/ford/2We present a unified framework to analyze the mean and mean-square stability of a large class of adaptive filters. We do this without obtaining a full transient model, allowing us to acquire sufficient conditions on the stability without assuming a given statistical distribution for the input regressors. We also apply the proposed framework to some popular adaptive filtering schemes, showing that in some cases the sufficient conditions derived are very tight and even necessary too.Fil: Rey Vega, Leonardo Javier. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad de Buenos Aires; ArgentinaFil: Rey, Hernan. Universidad de Buenos Aires; ArgentinaFil: Benesty, Jacob. Centre Armand-frappier Santé Biotechnologie ; Institut National de Recherche Scientifique; . Université du Québec a Montreal; CanadáElsevier Science2011-08info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/192917Rey Vega, Leonardo Javier; Rey, Hernan; Benesty, Jacob; Stability analysis of adaptive filters with regression vector nonlinearities; Elsevier Science; Signal Processing; 91; 8; 8-2011; 2091-21000165-1684CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/https://linkinghub.elsevier.com/retrieve/pii/S0165168411000934info:eu-repo/semantics/altIdentifier/doi/10.1016/j.sigpro.2011.03.018info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T09:50:39Zoai:ri.conicet.gov.ar:11336/192917instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 09:50:39.442CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Stability analysis of adaptive filters with regression vector nonlinearities |
title |
Stability analysis of adaptive filters with regression vector nonlinearities |
spellingShingle |
Stability analysis of adaptive filters with regression vector nonlinearities Rey Vega, Leonardo Javier ADAPTIVE FILTERS MEAN STABILITY MEAN-SQUARE STABILITY STEP-SIZE PARAMETER |
title_short |
Stability analysis of adaptive filters with regression vector nonlinearities |
title_full |
Stability analysis of adaptive filters with regression vector nonlinearities |
title_fullStr |
Stability analysis of adaptive filters with regression vector nonlinearities |
title_full_unstemmed |
Stability analysis of adaptive filters with regression vector nonlinearities |
title_sort |
Stability analysis of adaptive filters with regression vector nonlinearities |
dc.creator.none.fl_str_mv |
Rey Vega, Leonardo Javier Rey, Hernan Benesty, Jacob |
author |
Rey Vega, Leonardo Javier |
author_facet |
Rey Vega, Leonardo Javier Rey, Hernan Benesty, Jacob |
author_role |
author |
author2 |
Rey, Hernan Benesty, Jacob |
author2_role |
author author |
dc.subject.none.fl_str_mv |
ADAPTIVE FILTERS MEAN STABILITY MEAN-SQUARE STABILITY STEP-SIZE PARAMETER |
topic |
ADAPTIVE FILTERS MEAN STABILITY MEAN-SQUARE STABILITY STEP-SIZE PARAMETER |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/2.2 https://purl.org/becyt/ford/2 |
dc.description.none.fl_txt_mv |
We present a unified framework to analyze the mean and mean-square stability of a large class of adaptive filters. We do this without obtaining a full transient model, allowing us to acquire sufficient conditions on the stability without assuming a given statistical distribution for the input regressors. We also apply the proposed framework to some popular adaptive filtering schemes, showing that in some cases the sufficient conditions derived are very tight and even necessary too. Fil: Rey Vega, Leonardo Javier. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad de Buenos Aires; Argentina Fil: Rey, Hernan. Universidad de Buenos Aires; Argentina Fil: Benesty, Jacob. Centre Armand-frappier Santé Biotechnologie ; Institut National de Recherche Scientifique; . Université du Québec a Montreal; Canadá |
description |
We present a unified framework to analyze the mean and mean-square stability of a large class of adaptive filters. We do this without obtaining a full transient model, allowing us to acquire sufficient conditions on the stability without assuming a given statistical distribution for the input regressors. We also apply the proposed framework to some popular adaptive filtering schemes, showing that in some cases the sufficient conditions derived are very tight and even necessary too. |
publishDate |
2011 |
dc.date.none.fl_str_mv |
2011-08 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/192917 Rey Vega, Leonardo Javier; Rey, Hernan; Benesty, Jacob; Stability analysis of adaptive filters with regression vector nonlinearities; Elsevier Science; Signal Processing; 91; 8; 8-2011; 2091-2100 0165-1684 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/192917 |
identifier_str_mv |
Rey Vega, Leonardo Javier; Rey, Hernan; Benesty, Jacob; Stability analysis of adaptive filters with regression vector nonlinearities; Elsevier Science; Signal Processing; 91; 8; 8-2011; 2091-2100 0165-1684 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/url/https://linkinghub.elsevier.com/retrieve/pii/S0165168411000934 info:eu-repo/semantics/altIdentifier/doi/10.1016/j.sigpro.2011.03.018 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
Elsevier Science |
publisher.none.fl_str_mv |
Elsevier Science |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1844613560752144384 |
score |
13.070432 |