On orthogonal realizations for adaptive IIR filters
- Autores
- Cousseau, Juan Edmundo; Diniz, P. S. R.; Sentoni, G.; Agamennoni, Osvaldo Enrique
- Año de publicación
- 2000
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- Convergence speed is one of the main concerns in adaptive IIR filters. Fast convergence can be closely related to adaptive filter realization. However, with the exception of the lattice realization that is based on the nice properties of Szëgo orthonormal polynomials, no other adaptive IIR filter realization using orthonormal characteristics seems to be extensively studied in the literature. Furthermore, many orthogonal realizations for adaptive FIR filters, that are particularly suitable for rational modelling, have been proposed in the past years. Since rational orthogonal basis functions are a powerful tool for efficient system representation they seem attractive for adaptive IIR filters. In this paper, we present some theoretical results related to the properties of a generalized orthonormal realization when used for mean‐square output error minimization in a system identification application. One result is related to the low computational complexity of the updating gradient algorithm when some properties of the orthonormal realization are used. An additional result establishes conditions for the stationary points of the proposed updating algorithm. In order to confirm the expected performance of the new realization, some simulations and comparisons with competing realizations in terms of computational complexity and convergence speed are presented.
Fil: Cousseau, Juan Edmundo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca; Argentina. Universidad Nacional del Sur. Departamento de Ingeniería Eléctrica y de Computadoras; Argentina
Fil: Diniz, P. S. R.. Universidade Federal do Rio de Janeiro; Brasil
Fil: Sentoni, G.. Universidad Nacional del Sur. Departamento de Ingeniería Eléctrica y de Computadoras; Argentina
Fil: Agamennoni, Osvaldo Enrique. Universidad Nacional del Sur. Departamento de Ingeniería Eléctrica y de Computadoras; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca; Argentina - Materia
-
IIR FILTERS
ADAPTIVE
ORTHOGONAL
REALIZATION - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/104070
Ver los metadatos del registro completo
id |
CONICETDig_983801ecd2ae463e857650f90c46e7d0 |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/104070 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
On orthogonal realizations for adaptive IIR filtersCousseau, Juan EdmundoDiniz, P. S. R.Sentoni, G.Agamennoni, Osvaldo EnriqueIIR FILTERSADAPTIVEORTHOGONALREALIZATIONhttps://purl.org/becyt/ford/2.2https://purl.org/becyt/ford/2Convergence speed is one of the main concerns in adaptive IIR filters. Fast convergence can be closely related to adaptive filter realization. However, with the exception of the lattice realization that is based on the nice properties of Szëgo orthonormal polynomials, no other adaptive IIR filter realization using orthonormal characteristics seems to be extensively studied in the literature. Furthermore, many orthogonal realizations for adaptive FIR filters, that are particularly suitable for rational modelling, have been proposed in the past years. Since rational orthogonal basis functions are a powerful tool for efficient system representation they seem attractive for adaptive IIR filters. In this paper, we present some theoretical results related to the properties of a generalized orthonormal realization when used for mean‐square output error minimization in a system identification application. One result is related to the low computational complexity of the updating gradient algorithm when some properties of the orthonormal realization are used. An additional result establishes conditions for the stationary points of the proposed updating algorithm. In order to confirm the expected performance of the new realization, some simulations and comparisons with competing realizations in terms of computational complexity and convergence speed are presented.Fil: Cousseau, Juan Edmundo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca; Argentina. Universidad Nacional del Sur. Departamento de Ingeniería Eléctrica y de Computadoras; ArgentinaFil: Diniz, P. S. R.. Universidade Federal do Rio de Janeiro; BrasilFil: Sentoni, G.. Universidad Nacional del Sur. Departamento de Ingeniería Eléctrica y de Computadoras; ArgentinaFil: Agamennoni, Osvaldo Enrique. Universidad Nacional del Sur. Departamento de Ingeniería Eléctrica y de Computadoras; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca; ArgentinaJohn Wiley & Sons Ltd2000-09-19info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/104070Cousseau, Juan Edmundo; Diniz, P. S. R.; Sentoni, G.; Agamennoni, Osvaldo Enrique; On orthogonal realizations for adaptive IIR filters; John Wiley & Sons Ltd; International Journal Of Circuit Theory And Applications; 28; 5; 19-9-2000; 481-5000098-9886CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/https://onlinelibrary.wiley.com/doi/abs/10.1002/1097-007X%28200009/10%2928%3A5%3C481%3A%3AAID-CTA120%3E3.0.CO%3B2-Rinfo:eu-repo/semantics/altIdentifier/doi/10.1002/1097-007X(200009/10)28:5<481::AID-CTA120>3.0.CO;2-Rinfo:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-03T10:08:20Zoai:ri.conicet.gov.ar:11336/104070instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-03 10:08:20.804CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
On orthogonal realizations for adaptive IIR filters |
title |
On orthogonal realizations for adaptive IIR filters |
spellingShingle |
On orthogonal realizations for adaptive IIR filters Cousseau, Juan Edmundo IIR FILTERS ADAPTIVE ORTHOGONAL REALIZATION |
title_short |
On orthogonal realizations for adaptive IIR filters |
title_full |
On orthogonal realizations for adaptive IIR filters |
title_fullStr |
On orthogonal realizations for adaptive IIR filters |
title_full_unstemmed |
On orthogonal realizations for adaptive IIR filters |
title_sort |
On orthogonal realizations for adaptive IIR filters |
dc.creator.none.fl_str_mv |
Cousseau, Juan Edmundo Diniz, P. S. R. Sentoni, G. Agamennoni, Osvaldo Enrique |
author |
Cousseau, Juan Edmundo |
author_facet |
Cousseau, Juan Edmundo Diniz, P. S. R. Sentoni, G. Agamennoni, Osvaldo Enrique |
author_role |
author |
author2 |
Diniz, P. S. R. Sentoni, G. Agamennoni, Osvaldo Enrique |
author2_role |
author author author |
dc.subject.none.fl_str_mv |
IIR FILTERS ADAPTIVE ORTHOGONAL REALIZATION |
topic |
IIR FILTERS ADAPTIVE ORTHOGONAL REALIZATION |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/2.2 https://purl.org/becyt/ford/2 |
dc.description.none.fl_txt_mv |
Convergence speed is one of the main concerns in adaptive IIR filters. Fast convergence can be closely related to adaptive filter realization. However, with the exception of the lattice realization that is based on the nice properties of Szëgo orthonormal polynomials, no other adaptive IIR filter realization using orthonormal characteristics seems to be extensively studied in the literature. Furthermore, many orthogonal realizations for adaptive FIR filters, that are particularly suitable for rational modelling, have been proposed in the past years. Since rational orthogonal basis functions are a powerful tool for efficient system representation they seem attractive for adaptive IIR filters. In this paper, we present some theoretical results related to the properties of a generalized orthonormal realization when used for mean‐square output error minimization in a system identification application. One result is related to the low computational complexity of the updating gradient algorithm when some properties of the orthonormal realization are used. An additional result establishes conditions for the stationary points of the proposed updating algorithm. In order to confirm the expected performance of the new realization, some simulations and comparisons with competing realizations in terms of computational complexity and convergence speed are presented. Fil: Cousseau, Juan Edmundo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca; Argentina. Universidad Nacional del Sur. Departamento de Ingeniería Eléctrica y de Computadoras; Argentina Fil: Diniz, P. S. R.. Universidade Federal do Rio de Janeiro; Brasil Fil: Sentoni, G.. Universidad Nacional del Sur. Departamento de Ingeniería Eléctrica y de Computadoras; Argentina Fil: Agamennoni, Osvaldo Enrique. Universidad Nacional del Sur. Departamento de Ingeniería Eléctrica y de Computadoras; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca; Argentina |
description |
Convergence speed is one of the main concerns in adaptive IIR filters. Fast convergence can be closely related to adaptive filter realization. However, with the exception of the lattice realization that is based on the nice properties of Szëgo orthonormal polynomials, no other adaptive IIR filter realization using orthonormal characteristics seems to be extensively studied in the literature. Furthermore, many orthogonal realizations for adaptive FIR filters, that are particularly suitable for rational modelling, have been proposed in the past years. Since rational orthogonal basis functions are a powerful tool for efficient system representation they seem attractive for adaptive IIR filters. In this paper, we present some theoretical results related to the properties of a generalized orthonormal realization when used for mean‐square output error minimization in a system identification application. One result is related to the low computational complexity of the updating gradient algorithm when some properties of the orthonormal realization are used. An additional result establishes conditions for the stationary points of the proposed updating algorithm. In order to confirm the expected performance of the new realization, some simulations and comparisons with competing realizations in terms of computational complexity and convergence speed are presented. |
publishDate |
2000 |
dc.date.none.fl_str_mv |
2000-09-19 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/104070 Cousseau, Juan Edmundo; Diniz, P. S. R.; Sentoni, G.; Agamennoni, Osvaldo Enrique; On orthogonal realizations for adaptive IIR filters; John Wiley & Sons Ltd; International Journal Of Circuit Theory And Applications; 28; 5; 19-9-2000; 481-500 0098-9886 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/104070 |
identifier_str_mv |
Cousseau, Juan Edmundo; Diniz, P. S. R.; Sentoni, G.; Agamennoni, Osvaldo Enrique; On orthogonal realizations for adaptive IIR filters; John Wiley & Sons Ltd; International Journal Of Circuit Theory And Applications; 28; 5; 19-9-2000; 481-500 0098-9886 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/url/https://onlinelibrary.wiley.com/doi/abs/10.1002/1097-007X%28200009/10%2928%3A5%3C481%3A%3AAID-CTA120%3E3.0.CO%3B2-R info:eu-repo/semantics/altIdentifier/doi/10.1002/1097-007X(200009/10)28:5<481::AID-CTA120>3.0.CO;2-R |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
John Wiley & Sons Ltd |
publisher.none.fl_str_mv |
John Wiley & Sons Ltd |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1842270040672436224 |
score |
13.13397 |