On orthogonal realizations for adaptive IIR filters

Autores
Cousseau, Juan Edmundo; Diniz, P. S. R.; Sentoni, G.; Agamennoni, Osvaldo Enrique
Año de publicación
2000
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
Convergence speed is one of the main concerns in adaptive IIR filters. Fast convergence can be closely related to adaptive filter realization. However, with the exception of the lattice realization that is based on the nice properties of Szëgo orthonormal polynomials, no other adaptive IIR filter realization using orthonormal characteristics seems to be extensively studied in the literature. Furthermore, many orthogonal realizations for adaptive FIR filters, that are particularly suitable for rational modelling, have been proposed in the past years. Since rational orthogonal basis functions are a powerful tool for efficient system representation they seem attractive for adaptive IIR filters. In this paper, we present some theoretical results related to the properties of a generalized orthonormal realization when used for mean‐square output error minimization in a system identification application. One result is related to the low computational complexity of the updating gradient algorithm when some properties of the orthonormal realization are used. An additional result establishes conditions for the stationary points of the proposed updating algorithm. In order to confirm the expected performance of the new realization, some simulations and comparisons with competing realizations in terms of computational complexity and convergence speed are presented.
Fil: Cousseau, Juan Edmundo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca; Argentina. Universidad Nacional del Sur. Departamento de Ingeniería Eléctrica y de Computadoras; Argentina
Fil: Diniz, P. S. R.. Universidade Federal do Rio de Janeiro; Brasil
Fil: Sentoni, G.. Universidad Nacional del Sur. Departamento de Ingeniería Eléctrica y de Computadoras; Argentina
Fil: Agamennoni, Osvaldo Enrique. Universidad Nacional del Sur. Departamento de Ingeniería Eléctrica y de Computadoras; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca; Argentina
Materia
IIR FILTERS
ADAPTIVE
ORTHOGONAL
REALIZATION
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/104070

id CONICETDig_983801ecd2ae463e857650f90c46e7d0
oai_identifier_str oai:ri.conicet.gov.ar:11336/104070
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling On orthogonal realizations for adaptive IIR filtersCousseau, Juan EdmundoDiniz, P. S. R.Sentoni, G.Agamennoni, Osvaldo EnriqueIIR FILTERSADAPTIVEORTHOGONALREALIZATIONhttps://purl.org/becyt/ford/2.2https://purl.org/becyt/ford/2Convergence speed is one of the main concerns in adaptive IIR filters. Fast convergence can be closely related to adaptive filter realization. However, with the exception of the lattice realization that is based on the nice properties of Szëgo orthonormal polynomials, no other adaptive IIR filter realization using orthonormal characteristics seems to be extensively studied in the literature. Furthermore, many orthogonal realizations for adaptive FIR filters, that are particularly suitable for rational modelling, have been proposed in the past years. Since rational orthogonal basis functions are a powerful tool for efficient system representation they seem attractive for adaptive IIR filters. In this paper, we present some theoretical results related to the properties of a generalized orthonormal realization when used for mean‐square output error minimization in a system identification application. One result is related to the low computational complexity of the updating gradient algorithm when some properties of the orthonormal realization are used. An additional result establishes conditions for the stationary points of the proposed updating algorithm. In order to confirm the expected performance of the new realization, some simulations and comparisons with competing realizations in terms of computational complexity and convergence speed are presented.Fil: Cousseau, Juan Edmundo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca; Argentina. Universidad Nacional del Sur. Departamento de Ingeniería Eléctrica y de Computadoras; ArgentinaFil: Diniz, P. S. R.. Universidade Federal do Rio de Janeiro; BrasilFil: Sentoni, G.. Universidad Nacional del Sur. Departamento de Ingeniería Eléctrica y de Computadoras; ArgentinaFil: Agamennoni, Osvaldo Enrique. Universidad Nacional del Sur. Departamento de Ingeniería Eléctrica y de Computadoras; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca; ArgentinaJohn Wiley & Sons Ltd2000-09-19info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/104070Cousseau, Juan Edmundo; Diniz, P. S. R.; Sentoni, G.; Agamennoni, Osvaldo Enrique; On orthogonal realizations for adaptive IIR filters; John Wiley & Sons Ltd; International Journal Of Circuit Theory And Applications; 28; 5; 19-9-2000; 481-5000098-9886CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/https://onlinelibrary.wiley.com/doi/abs/10.1002/1097-007X%28200009/10%2928%3A5%3C481%3A%3AAID-CTA120%3E3.0.CO%3B2-Rinfo:eu-repo/semantics/altIdentifier/doi/10.1002/1097-007X(200009/10)28:5<481::AID-CTA120>3.0.CO;2-Rinfo:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-03T10:08:20Zoai:ri.conicet.gov.ar:11336/104070instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-03 10:08:20.804CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv On orthogonal realizations for adaptive IIR filters
title On orthogonal realizations for adaptive IIR filters
spellingShingle On orthogonal realizations for adaptive IIR filters
Cousseau, Juan Edmundo
IIR FILTERS
ADAPTIVE
ORTHOGONAL
REALIZATION
title_short On orthogonal realizations for adaptive IIR filters
title_full On orthogonal realizations for adaptive IIR filters
title_fullStr On orthogonal realizations for adaptive IIR filters
title_full_unstemmed On orthogonal realizations for adaptive IIR filters
title_sort On orthogonal realizations for adaptive IIR filters
dc.creator.none.fl_str_mv Cousseau, Juan Edmundo
Diniz, P. S. R.
Sentoni, G.
Agamennoni, Osvaldo Enrique
author Cousseau, Juan Edmundo
author_facet Cousseau, Juan Edmundo
Diniz, P. S. R.
Sentoni, G.
Agamennoni, Osvaldo Enrique
author_role author
author2 Diniz, P. S. R.
Sentoni, G.
Agamennoni, Osvaldo Enrique
author2_role author
author
author
dc.subject.none.fl_str_mv IIR FILTERS
ADAPTIVE
ORTHOGONAL
REALIZATION
topic IIR FILTERS
ADAPTIVE
ORTHOGONAL
REALIZATION
purl_subject.fl_str_mv https://purl.org/becyt/ford/2.2
https://purl.org/becyt/ford/2
dc.description.none.fl_txt_mv Convergence speed is one of the main concerns in adaptive IIR filters. Fast convergence can be closely related to adaptive filter realization. However, with the exception of the lattice realization that is based on the nice properties of Szëgo orthonormal polynomials, no other adaptive IIR filter realization using orthonormal characteristics seems to be extensively studied in the literature. Furthermore, many orthogonal realizations for adaptive FIR filters, that are particularly suitable for rational modelling, have been proposed in the past years. Since rational orthogonal basis functions are a powerful tool for efficient system representation they seem attractive for adaptive IIR filters. In this paper, we present some theoretical results related to the properties of a generalized orthonormal realization when used for mean‐square output error minimization in a system identification application. One result is related to the low computational complexity of the updating gradient algorithm when some properties of the orthonormal realization are used. An additional result establishes conditions for the stationary points of the proposed updating algorithm. In order to confirm the expected performance of the new realization, some simulations and comparisons with competing realizations in terms of computational complexity and convergence speed are presented.
Fil: Cousseau, Juan Edmundo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca; Argentina. Universidad Nacional del Sur. Departamento de Ingeniería Eléctrica y de Computadoras; Argentina
Fil: Diniz, P. S. R.. Universidade Federal do Rio de Janeiro; Brasil
Fil: Sentoni, G.. Universidad Nacional del Sur. Departamento de Ingeniería Eléctrica y de Computadoras; Argentina
Fil: Agamennoni, Osvaldo Enrique. Universidad Nacional del Sur. Departamento de Ingeniería Eléctrica y de Computadoras; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca; Argentina
description Convergence speed is one of the main concerns in adaptive IIR filters. Fast convergence can be closely related to adaptive filter realization. However, with the exception of the lattice realization that is based on the nice properties of Szëgo orthonormal polynomials, no other adaptive IIR filter realization using orthonormal characteristics seems to be extensively studied in the literature. Furthermore, many orthogonal realizations for adaptive FIR filters, that are particularly suitable for rational modelling, have been proposed in the past years. Since rational orthogonal basis functions are a powerful tool for efficient system representation they seem attractive for adaptive IIR filters. In this paper, we present some theoretical results related to the properties of a generalized orthonormal realization when used for mean‐square output error minimization in a system identification application. One result is related to the low computational complexity of the updating gradient algorithm when some properties of the orthonormal realization are used. An additional result establishes conditions for the stationary points of the proposed updating algorithm. In order to confirm the expected performance of the new realization, some simulations and comparisons with competing realizations in terms of computational complexity and convergence speed are presented.
publishDate 2000
dc.date.none.fl_str_mv 2000-09-19
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/104070
Cousseau, Juan Edmundo; Diniz, P. S. R.; Sentoni, G.; Agamennoni, Osvaldo Enrique; On orthogonal realizations for adaptive IIR filters; John Wiley & Sons Ltd; International Journal Of Circuit Theory And Applications; 28; 5; 19-9-2000; 481-500
0098-9886
CONICET Digital
CONICET
url http://hdl.handle.net/11336/104070
identifier_str_mv Cousseau, Juan Edmundo; Diniz, P. S. R.; Sentoni, G.; Agamennoni, Osvaldo Enrique; On orthogonal realizations for adaptive IIR filters; John Wiley & Sons Ltd; International Journal Of Circuit Theory And Applications; 28; 5; 19-9-2000; 481-500
0098-9886
CONICET Digital
CONICET
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/url/https://onlinelibrary.wiley.com/doi/abs/10.1002/1097-007X%28200009/10%2928%3A5%3C481%3A%3AAID-CTA120%3E3.0.CO%3B2-R
info:eu-repo/semantics/altIdentifier/doi/10.1002/1097-007X(200009/10)28:5<481::AID-CTA120>3.0.CO;2-R
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
application/pdf
dc.publisher.none.fl_str_mv John Wiley & Sons Ltd
publisher.none.fl_str_mv John Wiley & Sons Ltd
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1842270040672436224
score 13.13397