The resonance overlap and Hill stability criteria revisited
- Autores
- Ramos, Ximena Soledad; Correa Otto, Jorge Alfredo; Beauge, Cristian
- Año de publicación
- 2015
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- We review the orbital stability of the planar circular restricted three-body problemin the case of massless particles initially located between both massive bodies. We presentnew estimates of the resonance overlap criterion and the Hill stability limit and compare theirpredictions with detailed dynamical maps constructed with N-body simulations. We showthat the boundary between (Hill) stable and unstable orbits is not smooth but characterizedby a rich structure generated by the superposition of different mean-motion resonances,which does not allow for a simple global expression for stability. We propose that, for agiven perturbing mass m 1 and initial eccentricity e, there are actually two critical valuesof the semimajor axis. All values a < aHill are Hill-stable, while all values a > aunstableare unstable in the Hill sense. The first limit is given by the Hill-stability criterion and is afunction of the eccentricity. The second limit is virtually insensitive to the initial eccentricityand closely resembles a new resonance overlap condition (for circular orbits) developed interms of the intersection between first- and second-order mean-motion resonances.
Fil: Ramos, Ximena Soledad. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Córdoba. Instituto de Astronomía Teórica y Experimental; Argentina
Fil: Correa Otto, Jorge Alfredo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico San Juan. Complejo Astronómico "El Leoncito"; Argentina
Fil: Beauge, Cristian. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Córdoba. Instituto de Astronomía Teórica y Experimental; Argentina - Materia
-
Eccentric orbits
Mean-motion resonances
Resonance overlap criterion
Stability - Nivel de accesibilidad
- acceso embargado
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-nd/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/4873
Ver los metadatos del registro completo
id |
CONICETDig_7c2ccd2aa7b8f2ad90f0ed8bb9dba128 |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/4873 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
The resonance overlap and Hill stability criteria revisitedRamos, Ximena SoledadCorrea Otto, Jorge AlfredoBeauge, CristianEccentric orbitsMean-motion resonancesResonance overlap criterionStabilityhttps://purl.org/becyt/ford/1.3https://purl.org/becyt/ford/1We review the orbital stability of the planar circular restricted three-body problemin the case of massless particles initially located between both massive bodies. We presentnew estimates of the resonance overlap criterion and the Hill stability limit and compare theirpredictions with detailed dynamical maps constructed with N-body simulations. We showthat the boundary between (Hill) stable and unstable orbits is not smooth but characterizedby a rich structure generated by the superposition of different mean-motion resonances,which does not allow for a simple global expression for stability. We propose that, for agiven perturbing mass m 1 and initial eccentricity e, there are actually two critical valuesof the semimajor axis. All values a < aHill are Hill-stable, while all values a > aunstableare unstable in the Hill sense. The first limit is given by the Hill-stability criterion and is afunction of the eccentricity. The second limit is virtually insensitive to the initial eccentricityand closely resembles a new resonance overlap condition (for circular orbits) developed interms of the intersection between first- and second-order mean-motion resonances.Fil: Ramos, Ximena Soledad. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Córdoba. Instituto de Astronomía Teórica y Experimental; ArgentinaFil: Correa Otto, Jorge Alfredo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico San Juan. Complejo Astronómico "El Leoncito"; ArgentinaFil: Beauge, Cristian. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Córdoba. Instituto de Astronomía Teórica y Experimental; ArgentinaSpringer2015-08info:eu-repo/date/embargoEnd/2016-10-01info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/4873Ramos, Ximena Soledad; Correa Otto, Jorge Alfredo; Beauge, Cristian; The resonance overlap and Hill stability criteria revisited; Springer; Celestial Mechanics & Dynamical Astronomy; 123; 4; 8-2015; 453-4790923-2958enginfo:eu-repo/semantics/altIdentifier/url/http://link.springer.com/article/10.1007%2Fs10569-015-9646-zinfo:eu-repo/semantics/altIdentifier/doi/10.1007/s10569-015-9646-zinfo:eu-repo/semantics/altIdentifier/doi/info:eu-repo/semantics/altIdentifier/url/http://arxiv.org/abs/1509.03607info:eu-repo/semantics/altIdentifier/arxiv/1509.03607info:eu-repo/semantics/embargoedAccesshttps://creativecommons.org/licenses/by-nc-nd/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T10:29:15Zoai:ri.conicet.gov.ar:11336/4873instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 10:29:15.541CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
The resonance overlap and Hill stability criteria revisited |
title |
The resonance overlap and Hill stability criteria revisited |
spellingShingle |
The resonance overlap and Hill stability criteria revisited Ramos, Ximena Soledad Eccentric orbits Mean-motion resonances Resonance overlap criterion Stability |
title_short |
The resonance overlap and Hill stability criteria revisited |
title_full |
The resonance overlap and Hill stability criteria revisited |
title_fullStr |
The resonance overlap and Hill stability criteria revisited |
title_full_unstemmed |
The resonance overlap and Hill stability criteria revisited |
title_sort |
The resonance overlap and Hill stability criteria revisited |
dc.creator.none.fl_str_mv |
Ramos, Ximena Soledad Correa Otto, Jorge Alfredo Beauge, Cristian |
author |
Ramos, Ximena Soledad |
author_facet |
Ramos, Ximena Soledad Correa Otto, Jorge Alfredo Beauge, Cristian |
author_role |
author |
author2 |
Correa Otto, Jorge Alfredo Beauge, Cristian |
author2_role |
author author |
dc.subject.none.fl_str_mv |
Eccentric orbits Mean-motion resonances Resonance overlap criterion Stability |
topic |
Eccentric orbits Mean-motion resonances Resonance overlap criterion Stability |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.3 https://purl.org/becyt/ford/1 |
dc.description.none.fl_txt_mv |
We review the orbital stability of the planar circular restricted three-body problemin the case of massless particles initially located between both massive bodies. We presentnew estimates of the resonance overlap criterion and the Hill stability limit and compare theirpredictions with detailed dynamical maps constructed with N-body simulations. We showthat the boundary between (Hill) stable and unstable orbits is not smooth but characterizedby a rich structure generated by the superposition of different mean-motion resonances,which does not allow for a simple global expression for stability. We propose that, for agiven perturbing mass m 1 and initial eccentricity e, there are actually two critical valuesof the semimajor axis. All values a < aHill are Hill-stable, while all values a > aunstableare unstable in the Hill sense. The first limit is given by the Hill-stability criterion and is afunction of the eccentricity. The second limit is virtually insensitive to the initial eccentricityand closely resembles a new resonance overlap condition (for circular orbits) developed interms of the intersection between first- and second-order mean-motion resonances. Fil: Ramos, Ximena Soledad. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Córdoba. Instituto de Astronomía Teórica y Experimental; Argentina Fil: Correa Otto, Jorge Alfredo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico San Juan. Complejo Astronómico "El Leoncito"; Argentina Fil: Beauge, Cristian. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Córdoba. Instituto de Astronomía Teórica y Experimental; Argentina |
description |
We review the orbital stability of the planar circular restricted three-body problemin the case of massless particles initially located between both massive bodies. We presentnew estimates of the resonance overlap criterion and the Hill stability limit and compare theirpredictions with detailed dynamical maps constructed with N-body simulations. We showthat the boundary between (Hill) stable and unstable orbits is not smooth but characterizedby a rich structure generated by the superposition of different mean-motion resonances,which does not allow for a simple global expression for stability. We propose that, for agiven perturbing mass m 1 and initial eccentricity e, there are actually two critical valuesof the semimajor axis. All values a < aHill are Hill-stable, while all values a > aunstableare unstable in the Hill sense. The first limit is given by the Hill-stability criterion and is afunction of the eccentricity. The second limit is virtually insensitive to the initial eccentricityand closely resembles a new resonance overlap condition (for circular orbits) developed interms of the intersection between first- and second-order mean-motion resonances. |
publishDate |
2015 |
dc.date.none.fl_str_mv |
2015-08 info:eu-repo/date/embargoEnd/2016-10-01 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/4873 Ramos, Ximena Soledad; Correa Otto, Jorge Alfredo; Beauge, Cristian; The resonance overlap and Hill stability criteria revisited; Springer; Celestial Mechanics & Dynamical Astronomy; 123; 4; 8-2015; 453-479 0923-2958 |
url |
http://hdl.handle.net/11336/4873 |
identifier_str_mv |
Ramos, Ximena Soledad; Correa Otto, Jorge Alfredo; Beauge, Cristian; The resonance overlap and Hill stability criteria revisited; Springer; Celestial Mechanics & Dynamical Astronomy; 123; 4; 8-2015; 453-479 0923-2958 |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/url/http://link.springer.com/article/10.1007%2Fs10569-015-9646-z info:eu-repo/semantics/altIdentifier/doi/10.1007/s10569-015-9646-z info:eu-repo/semantics/altIdentifier/doi/ info:eu-repo/semantics/altIdentifier/url/http://arxiv.org/abs/1509.03607 info:eu-repo/semantics/altIdentifier/arxiv/1509.03607 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/embargoedAccess https://creativecommons.org/licenses/by-nc-nd/2.5/ar/ |
eu_rights_str_mv |
embargoedAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-nd/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
Springer |
publisher.none.fl_str_mv |
Springer |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1844614298107641856 |
score |
13.070432 |