The resonance overlap and Hill stability criteria revisited

Autores
Ramos, Ximena Soledad; Correa Otto, Jorge Alfredo; Beauge, Cristian
Año de publicación
2015
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
We review the orbital stability of the planar circular restricted three-body problemin the case of massless particles initially located between both massive bodies. We presentnew estimates of the resonance overlap criterion and the Hill stability limit and compare theirpredictions with detailed dynamical maps constructed with N-body simulations. We showthat the boundary between (Hill) stable and unstable orbits is not smooth but characterizedby a rich structure generated by the superposition of different mean-motion resonances,which does not allow for a simple global expression for stability. We propose that, for agiven perturbing mass m 1 and initial eccentricity e, there are actually two critical valuesof the semimajor axis. All values a < aHill are Hill-stable, while all values a > aunstableare unstable in the Hill sense. The first limit is given by the Hill-stability criterion and is afunction of the eccentricity. The second limit is virtually insensitive to the initial eccentricityand closely resembles a new resonance overlap condition (for circular orbits) developed interms of the intersection between first- and second-order mean-motion resonances.
Fil: Ramos, Ximena Soledad. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Córdoba. Instituto de Astronomía Teórica y Experimental; Argentina
Fil: Correa Otto, Jorge Alfredo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico San Juan. Complejo Astronómico "El Leoncito"; Argentina
Fil: Beauge, Cristian. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Córdoba. Instituto de Astronomía Teórica y Experimental; Argentina
Materia
Eccentric orbits
Mean-motion resonances
Resonance overlap criterion
Stability
Nivel de accesibilidad
acceso embargado
Condiciones de uso
https://creativecommons.org/licenses/by-nc-nd/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/4873

id CONICETDig_7c2ccd2aa7b8f2ad90f0ed8bb9dba128
oai_identifier_str oai:ri.conicet.gov.ar:11336/4873
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling The resonance overlap and Hill stability criteria revisitedRamos, Ximena SoledadCorrea Otto, Jorge AlfredoBeauge, CristianEccentric orbitsMean-motion resonancesResonance overlap criterionStabilityhttps://purl.org/becyt/ford/1.3https://purl.org/becyt/ford/1We review the orbital stability of the planar circular restricted three-body problemin the case of massless particles initially located between both massive bodies. We presentnew estimates of the resonance overlap criterion and the Hill stability limit and compare theirpredictions with detailed dynamical maps constructed with N-body simulations. We showthat the boundary between (Hill) stable and unstable orbits is not smooth but characterizedby a rich structure generated by the superposition of different mean-motion resonances,which does not allow for a simple global expression for stability. We propose that, for agiven perturbing mass m 1 and initial eccentricity e, there are actually two critical valuesof the semimajor axis. All values a < aHill are Hill-stable, while all values a > aunstableare unstable in the Hill sense. The first limit is given by the Hill-stability criterion and is afunction of the eccentricity. The second limit is virtually insensitive to the initial eccentricityand closely resembles a new resonance overlap condition (for circular orbits) developed interms of the intersection between first- and second-order mean-motion resonances.Fil: Ramos, Ximena Soledad. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Córdoba. Instituto de Astronomía Teórica y Experimental; ArgentinaFil: Correa Otto, Jorge Alfredo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico San Juan. Complejo Astronómico "El Leoncito"; ArgentinaFil: Beauge, Cristian. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Córdoba. Instituto de Astronomía Teórica y Experimental; ArgentinaSpringer2015-08info:eu-repo/date/embargoEnd/2016-10-01info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/4873Ramos, Ximena Soledad; Correa Otto, Jorge Alfredo; Beauge, Cristian; The resonance overlap and Hill stability criteria revisited; Springer; Celestial Mechanics & Dynamical Astronomy; 123; 4; 8-2015; 453-4790923-2958enginfo:eu-repo/semantics/altIdentifier/url/http://link.springer.com/article/10.1007%2Fs10569-015-9646-zinfo:eu-repo/semantics/altIdentifier/doi/10.1007/s10569-015-9646-zinfo:eu-repo/semantics/altIdentifier/doi/info:eu-repo/semantics/altIdentifier/url/http://arxiv.org/abs/1509.03607info:eu-repo/semantics/altIdentifier/arxiv/1509.03607info:eu-repo/semantics/embargoedAccesshttps://creativecommons.org/licenses/by-nc-nd/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T10:29:15Zoai:ri.conicet.gov.ar:11336/4873instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 10:29:15.541CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv The resonance overlap and Hill stability criteria revisited
title The resonance overlap and Hill stability criteria revisited
spellingShingle The resonance overlap and Hill stability criteria revisited
Ramos, Ximena Soledad
Eccentric orbits
Mean-motion resonances
Resonance overlap criterion
Stability
title_short The resonance overlap and Hill stability criteria revisited
title_full The resonance overlap and Hill stability criteria revisited
title_fullStr The resonance overlap and Hill stability criteria revisited
title_full_unstemmed The resonance overlap and Hill stability criteria revisited
title_sort The resonance overlap and Hill stability criteria revisited
dc.creator.none.fl_str_mv Ramos, Ximena Soledad
Correa Otto, Jorge Alfredo
Beauge, Cristian
author Ramos, Ximena Soledad
author_facet Ramos, Ximena Soledad
Correa Otto, Jorge Alfredo
Beauge, Cristian
author_role author
author2 Correa Otto, Jorge Alfredo
Beauge, Cristian
author2_role author
author
dc.subject.none.fl_str_mv Eccentric orbits
Mean-motion resonances
Resonance overlap criterion
Stability
topic Eccentric orbits
Mean-motion resonances
Resonance overlap criterion
Stability
purl_subject.fl_str_mv https://purl.org/becyt/ford/1.3
https://purl.org/becyt/ford/1
dc.description.none.fl_txt_mv We review the orbital stability of the planar circular restricted three-body problemin the case of massless particles initially located between both massive bodies. We presentnew estimates of the resonance overlap criterion and the Hill stability limit and compare theirpredictions with detailed dynamical maps constructed with N-body simulations. We showthat the boundary between (Hill) stable and unstable orbits is not smooth but characterizedby a rich structure generated by the superposition of different mean-motion resonances,which does not allow for a simple global expression for stability. We propose that, for agiven perturbing mass m 1 and initial eccentricity e, there are actually two critical valuesof the semimajor axis. All values a < aHill are Hill-stable, while all values a > aunstableare unstable in the Hill sense. The first limit is given by the Hill-stability criterion and is afunction of the eccentricity. The second limit is virtually insensitive to the initial eccentricityand closely resembles a new resonance overlap condition (for circular orbits) developed interms of the intersection between first- and second-order mean-motion resonances.
Fil: Ramos, Ximena Soledad. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Córdoba. Instituto de Astronomía Teórica y Experimental; Argentina
Fil: Correa Otto, Jorge Alfredo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico San Juan. Complejo Astronómico "El Leoncito"; Argentina
Fil: Beauge, Cristian. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Córdoba. Instituto de Astronomía Teórica y Experimental; Argentina
description We review the orbital stability of the planar circular restricted three-body problemin the case of massless particles initially located between both massive bodies. We presentnew estimates of the resonance overlap criterion and the Hill stability limit and compare theirpredictions with detailed dynamical maps constructed with N-body simulations. We showthat the boundary between (Hill) stable and unstable orbits is not smooth but characterizedby a rich structure generated by the superposition of different mean-motion resonances,which does not allow for a simple global expression for stability. We propose that, for agiven perturbing mass m 1 and initial eccentricity e, there are actually two critical valuesof the semimajor axis. All values a < aHill are Hill-stable, while all values a > aunstableare unstable in the Hill sense. The first limit is given by the Hill-stability criterion and is afunction of the eccentricity. The second limit is virtually insensitive to the initial eccentricityand closely resembles a new resonance overlap condition (for circular orbits) developed interms of the intersection between first- and second-order mean-motion resonances.
publishDate 2015
dc.date.none.fl_str_mv 2015-08
info:eu-repo/date/embargoEnd/2016-10-01
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/4873
Ramos, Ximena Soledad; Correa Otto, Jorge Alfredo; Beauge, Cristian; The resonance overlap and Hill stability criteria revisited; Springer; Celestial Mechanics & Dynamical Astronomy; 123; 4; 8-2015; 453-479
0923-2958
url http://hdl.handle.net/11336/4873
identifier_str_mv Ramos, Ximena Soledad; Correa Otto, Jorge Alfredo; Beauge, Cristian; The resonance overlap and Hill stability criteria revisited; Springer; Celestial Mechanics & Dynamical Astronomy; 123; 4; 8-2015; 453-479
0923-2958
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/url/http://link.springer.com/article/10.1007%2Fs10569-015-9646-z
info:eu-repo/semantics/altIdentifier/doi/10.1007/s10569-015-9646-z
info:eu-repo/semantics/altIdentifier/doi/
info:eu-repo/semantics/altIdentifier/url/http://arxiv.org/abs/1509.03607
info:eu-repo/semantics/altIdentifier/arxiv/1509.03607
dc.rights.none.fl_str_mv info:eu-repo/semantics/embargoedAccess
https://creativecommons.org/licenses/by-nc-nd/2.5/ar/
eu_rights_str_mv embargoedAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-nd/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
application/pdf
dc.publisher.none.fl_str_mv Springer
publisher.none.fl_str_mv Springer
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1844614298107641856
score 13.070432