Penetration of waves in global stochastic conducting media

Autores
Nizama Mendoza, Marco Alfredo; Caceres Garcia Faure, Manuel Osvaldo
Año de publicación
2023
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
The attenuation in the propagation of a plane wave in conducting media has been studied. We analyzed a wave motion suffering dissipation by the Joule effect in its propagation in a medium with global disorder. We solved the stochastic telegrapher’s equation in the Fourier-Laplace representation allowing us to find the space penetration length of a plane wave in a complex conducting medium. Considering fluctuations in the loss of energy, we found a critical value kc for Fourier’s modes, thus if |k| < kc the waves are localized. We showed that the penetration length is inversely proportional to kc. Thus, the penetration length L = k−1 c becomes an important piece of information for describing wave propagation with Markovian and non-Markovian fluctuations in the rate of the absorption of energy τ −1. In addition, intermittent fluctuations in this rate have also been studied.
Fil: Nizama Mendoza, Marco Alfredo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Patagonia Norte; Argentina. Universidad Nacional del Comahue. Facultad de Ingeniería. Departamento de Física; Argentina
Fil: Caceres Garcia Faure, Manuel Osvaldo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Patagonia Norte; Argentina. Comisión Nacional de Energía Atómica. Gerencia del Área de Energía Nuclear. Instituto Balseiro. Archivo Histórico del Centro Atómico Bariloche e Instituto Balseiro | Universidad Nacional de Cuyo. Instituto Balseiro. Archivo Histórico del Centro Atómico Bariloche e Instituto Balseiro; Argentina
Materia
random waves
penetration
telegrapher equation
hyperbolic diffusion
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/224476

id CONICETDig_93b5fc427f45806f8a59390bd14a6bb1
oai_identifier_str oai:ri.conicet.gov.ar:11336/224476
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling Penetration of waves in global stochastic conducting mediaNizama Mendoza, Marco AlfredoCaceres Garcia Faure, Manuel Osvaldorandom wavespenetrationtelegrapher equationhyperbolic diffusionhttps://purl.org/becyt/ford/1.3https://purl.org/becyt/ford/1The attenuation in the propagation of a plane wave in conducting media has been studied. We analyzed a wave motion suffering dissipation by the Joule effect in its propagation in a medium with global disorder. We solved the stochastic telegrapher’s equation in the Fourier-Laplace representation allowing us to find the space penetration length of a plane wave in a complex conducting medium. Considering fluctuations in the loss of energy, we found a critical value kc for Fourier’s modes, thus if |k| < kc the waves are localized. We showed that the penetration length is inversely proportional to kc. Thus, the penetration length L = k−1 c becomes an important piece of information for describing wave propagation with Markovian and non-Markovian fluctuations in the rate of the absorption of energy τ −1. In addition, intermittent fluctuations in this rate have also been studied.Fil: Nizama Mendoza, Marco Alfredo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Patagonia Norte; Argentina. Universidad Nacional del Comahue. Facultad de Ingeniería. Departamento de Física; ArgentinaFil: Caceres Garcia Faure, Manuel Osvaldo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Patagonia Norte; Argentina. Comisión Nacional de Energía Atómica. Gerencia del Área de Energía Nuclear. Instituto Balseiro. Archivo Histórico del Centro Atómico Bariloche e Instituto Balseiro | Universidad Nacional de Cuyo. Instituto Balseiro. Archivo Histórico del Centro Atómico Bariloche e Instituto Balseiro; ArgentinaAmerican Physical Society2023-05info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/224476Nizama Mendoza, Marco Alfredo; Caceres Garcia Faure, Manuel Osvaldo; Penetration of waves in global stochastic conducting media; American Physical Society; Physical Review E; 107; 5; 5-2023; 1-112470-0053CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/https://link.aps.org/doi/10.1103/PhysRevE.107.054107info:eu-repo/semantics/altIdentifier/doi/10.1103/PhysRevE.107.054107info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-03T09:44:13Zoai:ri.conicet.gov.ar:11336/224476instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-03 09:44:13.937CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv Penetration of waves in global stochastic conducting media
title Penetration of waves in global stochastic conducting media
spellingShingle Penetration of waves in global stochastic conducting media
Nizama Mendoza, Marco Alfredo
random waves
penetration
telegrapher equation
hyperbolic diffusion
title_short Penetration of waves in global stochastic conducting media
title_full Penetration of waves in global stochastic conducting media
title_fullStr Penetration of waves in global stochastic conducting media
title_full_unstemmed Penetration of waves in global stochastic conducting media
title_sort Penetration of waves in global stochastic conducting media
dc.creator.none.fl_str_mv Nizama Mendoza, Marco Alfredo
Caceres Garcia Faure, Manuel Osvaldo
author Nizama Mendoza, Marco Alfredo
author_facet Nizama Mendoza, Marco Alfredo
Caceres Garcia Faure, Manuel Osvaldo
author_role author
author2 Caceres Garcia Faure, Manuel Osvaldo
author2_role author
dc.subject.none.fl_str_mv random waves
penetration
telegrapher equation
hyperbolic diffusion
topic random waves
penetration
telegrapher equation
hyperbolic diffusion
purl_subject.fl_str_mv https://purl.org/becyt/ford/1.3
https://purl.org/becyt/ford/1
dc.description.none.fl_txt_mv The attenuation in the propagation of a plane wave in conducting media has been studied. We analyzed a wave motion suffering dissipation by the Joule effect in its propagation in a medium with global disorder. We solved the stochastic telegrapher’s equation in the Fourier-Laplace representation allowing us to find the space penetration length of a plane wave in a complex conducting medium. Considering fluctuations in the loss of energy, we found a critical value kc for Fourier’s modes, thus if |k| < kc the waves are localized. We showed that the penetration length is inversely proportional to kc. Thus, the penetration length L = k−1 c becomes an important piece of information for describing wave propagation with Markovian and non-Markovian fluctuations in the rate of the absorption of energy τ −1. In addition, intermittent fluctuations in this rate have also been studied.
Fil: Nizama Mendoza, Marco Alfredo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Patagonia Norte; Argentina. Universidad Nacional del Comahue. Facultad de Ingeniería. Departamento de Física; Argentina
Fil: Caceres Garcia Faure, Manuel Osvaldo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Patagonia Norte; Argentina. Comisión Nacional de Energía Atómica. Gerencia del Área de Energía Nuclear. Instituto Balseiro. Archivo Histórico del Centro Atómico Bariloche e Instituto Balseiro | Universidad Nacional de Cuyo. Instituto Balseiro. Archivo Histórico del Centro Atómico Bariloche e Instituto Balseiro; Argentina
description The attenuation in the propagation of a plane wave in conducting media has been studied. We analyzed a wave motion suffering dissipation by the Joule effect in its propagation in a medium with global disorder. We solved the stochastic telegrapher’s equation in the Fourier-Laplace representation allowing us to find the space penetration length of a plane wave in a complex conducting medium. Considering fluctuations in the loss of energy, we found a critical value kc for Fourier’s modes, thus if |k| < kc the waves are localized. We showed that the penetration length is inversely proportional to kc. Thus, the penetration length L = k−1 c becomes an important piece of information for describing wave propagation with Markovian and non-Markovian fluctuations in the rate of the absorption of energy τ −1. In addition, intermittent fluctuations in this rate have also been studied.
publishDate 2023
dc.date.none.fl_str_mv 2023-05
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/224476
Nizama Mendoza, Marco Alfredo; Caceres Garcia Faure, Manuel Osvaldo; Penetration of waves in global stochastic conducting media; American Physical Society; Physical Review E; 107; 5; 5-2023; 1-11
2470-0053
CONICET Digital
CONICET
url http://hdl.handle.net/11336/224476
identifier_str_mv Nizama Mendoza, Marco Alfredo; Caceres Garcia Faure, Manuel Osvaldo; Penetration of waves in global stochastic conducting media; American Physical Society; Physical Review E; 107; 5; 5-2023; 1-11
2470-0053
CONICET Digital
CONICET
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/url/https://link.aps.org/doi/10.1103/PhysRevE.107.054107
info:eu-repo/semantics/altIdentifier/doi/10.1103/PhysRevE.107.054107
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
application/pdf
dc.publisher.none.fl_str_mv American Physical Society
publisher.none.fl_str_mv American Physical Society
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1842268651463376896
score 13.13397