First-passage times for pattern formation in nonlocal partial differential equations
- Autores
- Caceres Garcia Faure, Manuel Osvaldo; Fuentes, Miguel Angel
- Año de publicación
- 2015
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- We describe the lifetimes associated with the stochastic evolution from an unstable uniform state to a patterned one when the time evolution of the field is controlled by a nonlocal Fisher equation. A small noise is added to the evolution equation to define the lifetimes and to calculate the mean first-passage time of the stochastic field through a given threshold value, before the patterned steady state is reached. In order to obtain analytical results we introduce a stochastic multiscale perturbation expansion. This multiscale expansion can also be used to tackle multiplicative stochastic partial differential equations. A critical slowing down is predicted for the marginal case when the Fourier phase of the unstable initial condition is null. We carry out Monte Carlo simulations to show the agreement with our theoretical predictions. Analytic results for the bifurcation point and asymptotic analysis of traveling wave-front solutions are included to get insight into the noise-induced transition phenomena mediated by invading fronts.
Fil: Caceres Garcia Faure, Manuel Osvaldo. Comisión Nacional de Energía Atómica. Centro Atómico Bariloche; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
Fil: Fuentes, Miguel Angel. Instituto de Investigaciones Filosóficas - Sadaf; Argentina. Universidad San Sebastian; Chile. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina - Materia
-
Stochastic Process
Non Local Interaction
Population Model
Mfpt - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/42141
Ver los metadatos del registro completo
id |
CONICETDig_86d461704c951b9dbe04549d3b6cb1ab |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/42141 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
First-passage times for pattern formation in nonlocal partial differential equationsCaceres Garcia Faure, Manuel OsvaldoFuentes, Miguel AngelStochastic ProcessNon Local InteractionPopulation ModelMfpthttps://purl.org/becyt/ford/1.3https://purl.org/becyt/ford/1We describe the lifetimes associated with the stochastic evolution from an unstable uniform state to a patterned one when the time evolution of the field is controlled by a nonlocal Fisher equation. A small noise is added to the evolution equation to define the lifetimes and to calculate the mean first-passage time of the stochastic field through a given threshold value, before the patterned steady state is reached. In order to obtain analytical results we introduce a stochastic multiscale perturbation expansion. This multiscale expansion can also be used to tackle multiplicative stochastic partial differential equations. A critical slowing down is predicted for the marginal case when the Fourier phase of the unstable initial condition is null. We carry out Monte Carlo simulations to show the agreement with our theoretical predictions. Analytic results for the bifurcation point and asymptotic analysis of traveling wave-front solutions are included to get insight into the noise-induced transition phenomena mediated by invading fronts.Fil: Caceres Garcia Faure, Manuel Osvaldo. Comisión Nacional de Energía Atómica. Centro Atómico Bariloche; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Fuentes, Miguel Angel. Instituto de Investigaciones Filosóficas - Sadaf; Argentina. Universidad San Sebastian; Chile. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaAmerican Physical Society2015-10info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/42141Caceres Garcia Faure, Manuel Osvaldo; Fuentes, Miguel Angel; First-passage times for pattern formation in nonlocal partial differential equations; American Physical Society; Physical Review E: Statistical, Nonlinear and Soft Matter Physics; 92; 4; 10-2015; 1-141539-3755CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/https://journals.aps.org/pre/abstract/10.1103/PhysRevE.92.042122info:eu-repo/semantics/altIdentifier/doi/10.1103/PhysRevE.92.042122info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T09:51:52Zoai:ri.conicet.gov.ar:11336/42141instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 09:51:52.566CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
First-passage times for pattern formation in nonlocal partial differential equations |
title |
First-passage times for pattern formation in nonlocal partial differential equations |
spellingShingle |
First-passage times for pattern formation in nonlocal partial differential equations Caceres Garcia Faure, Manuel Osvaldo Stochastic Process Non Local Interaction Population Model Mfpt |
title_short |
First-passage times for pattern formation in nonlocal partial differential equations |
title_full |
First-passage times for pattern formation in nonlocal partial differential equations |
title_fullStr |
First-passage times for pattern formation in nonlocal partial differential equations |
title_full_unstemmed |
First-passage times for pattern formation in nonlocal partial differential equations |
title_sort |
First-passage times for pattern formation in nonlocal partial differential equations |
dc.creator.none.fl_str_mv |
Caceres Garcia Faure, Manuel Osvaldo Fuentes, Miguel Angel |
author |
Caceres Garcia Faure, Manuel Osvaldo |
author_facet |
Caceres Garcia Faure, Manuel Osvaldo Fuentes, Miguel Angel |
author_role |
author |
author2 |
Fuentes, Miguel Angel |
author2_role |
author |
dc.subject.none.fl_str_mv |
Stochastic Process Non Local Interaction Population Model Mfpt |
topic |
Stochastic Process Non Local Interaction Population Model Mfpt |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.3 https://purl.org/becyt/ford/1 |
dc.description.none.fl_txt_mv |
We describe the lifetimes associated with the stochastic evolution from an unstable uniform state to a patterned one when the time evolution of the field is controlled by a nonlocal Fisher equation. A small noise is added to the evolution equation to define the lifetimes and to calculate the mean first-passage time of the stochastic field through a given threshold value, before the patterned steady state is reached. In order to obtain analytical results we introduce a stochastic multiscale perturbation expansion. This multiscale expansion can also be used to tackle multiplicative stochastic partial differential equations. A critical slowing down is predicted for the marginal case when the Fourier phase of the unstable initial condition is null. We carry out Monte Carlo simulations to show the agreement with our theoretical predictions. Analytic results for the bifurcation point and asymptotic analysis of traveling wave-front solutions are included to get insight into the noise-induced transition phenomena mediated by invading fronts. Fil: Caceres Garcia Faure, Manuel Osvaldo. Comisión Nacional de Energía Atómica. Centro Atómico Bariloche; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina Fil: Fuentes, Miguel Angel. Instituto de Investigaciones Filosóficas - Sadaf; Argentina. Universidad San Sebastian; Chile. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina |
description |
We describe the lifetimes associated with the stochastic evolution from an unstable uniform state to a patterned one when the time evolution of the field is controlled by a nonlocal Fisher equation. A small noise is added to the evolution equation to define the lifetimes and to calculate the mean first-passage time of the stochastic field through a given threshold value, before the patterned steady state is reached. In order to obtain analytical results we introduce a stochastic multiscale perturbation expansion. This multiscale expansion can also be used to tackle multiplicative stochastic partial differential equations. A critical slowing down is predicted for the marginal case when the Fourier phase of the unstable initial condition is null. We carry out Monte Carlo simulations to show the agreement with our theoretical predictions. Analytic results for the bifurcation point and asymptotic analysis of traveling wave-front solutions are included to get insight into the noise-induced transition phenomena mediated by invading fronts. |
publishDate |
2015 |
dc.date.none.fl_str_mv |
2015-10 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/42141 Caceres Garcia Faure, Manuel Osvaldo; Fuentes, Miguel Angel; First-passage times for pattern formation in nonlocal partial differential equations; American Physical Society; Physical Review E: Statistical, Nonlinear and Soft Matter Physics; 92; 4; 10-2015; 1-14 1539-3755 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/42141 |
identifier_str_mv |
Caceres Garcia Faure, Manuel Osvaldo; Fuentes, Miguel Angel; First-passage times for pattern formation in nonlocal partial differential equations; American Physical Society; Physical Review E: Statistical, Nonlinear and Soft Matter Physics; 92; 4; 10-2015; 1-14 1539-3755 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/url/https://journals.aps.org/pre/abstract/10.1103/PhysRevE.92.042122 info:eu-repo/semantics/altIdentifier/doi/10.1103/PhysRevE.92.042122 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
American Physical Society |
publisher.none.fl_str_mv |
American Physical Society |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1844613593041993728 |
score |
13.070432 |