On some semi-intuitionistic logics

Autores
Cornejo, Juan Manuel; Viglizzo, Ignacio Dario
Año de publicación
2015
Idioma
español castellano
Tipo de recurso
documento de conferencia
Estado
versión publicada
Descripción
Semi-intuitionistic logic is the logic counterpart to semi-Heyting algebras, which weredefined by H. P. Sankappanavar in [3] as a variety generalizing the one of Heyting algebraswhile retaining some important features, like the fact that they are all pseudocomplementeddistributive lattices and their congruences are determined by filters. Semi-Heyting algebrasare algebras A = hA,∨,∧,→,>,⊥i that satisfy the conditions:(SH1) hA,∨,∧,>,⊥i is a bounded lattice(SH2) x∧(x → y) ≈ x∧y(SH3) x∧(y → z) ≈ x∧[(x∧y) → (x∧z)](SH4) x → x ≈ >.We present a new, more streamlined set of axioms for semi-intuitionistic logic, which weprove translationally equivalent to the one introduced in [1]. We then study some formulasthat define a semi-Heyting implication, and specialize this study to the case in which theformulas use only the lattice operators and the intuitionistic implication. We prove thenthat all the logics thus obtained are equivalent to intuitionistic logic, and give their Kripkesemantics.This work has been published in Studia Logica [2].
Fil: Cornejo, Juan Manuel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Instituto de Matemática Bahía Blanca. Universidad Nacional del Sur. Departamento de Matemática. Instituto de Matemática Bahía Blanca; Argentina
Fil: Viglizzo, Ignacio Dario. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Instituto de Matemática Bahía Blanca. Universidad Nacional del Sur. Departamento de Matemática. Instituto de Matemática Bahía Blanca; Argentina
XIII Congreso Dr. Antonio Monteiro
Bahia Blanca
Argentina
Universidad Nacional del Sur. Departamento de Matemática
Instituto de Matemática de Bahía Blanca
Materia
LOGICA SEMI INTUICIONISTA
HEYTING
SEMI HEYTING
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/155487

id CONICETDig_869372998e983e25c7b258f315ddf429
oai_identifier_str oai:ri.conicet.gov.ar:11336/155487
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling On some semi-intuitionistic logicsCornejo, Juan ManuelViglizzo, Ignacio DarioLOGICA SEMI INTUICIONISTAHEYTINGSEMI HEYTINGhttps://purl.org/becyt/ford/1.1https://purl.org/becyt/ford/1Semi-intuitionistic logic is the logic counterpart to semi-Heyting algebras, which weredefined by H. P. Sankappanavar in [3] as a variety generalizing the one of Heyting algebraswhile retaining some important features, like the fact that they are all pseudocomplementeddistributive lattices and their congruences are determined by filters. Semi-Heyting algebrasare algebras A = hA,∨,∧,→,>,⊥i that satisfy the conditions:(SH1) hA,∨,∧,>,⊥i is a bounded lattice(SH2) x∧(x → y) ≈ x∧y(SH3) x∧(y → z) ≈ x∧[(x∧y) → (x∧z)](SH4) x → x ≈ >.We present a new, more streamlined set of axioms for semi-intuitionistic logic, which weprove translationally equivalent to the one introduced in [1]. We then study some formulasthat define a semi-Heyting implication, and specialize this study to the case in which theformulas use only the lattice operators and the intuitionistic implication. We prove thenthat all the logics thus obtained are equivalent to intuitionistic logic, and give their Kripkesemantics.This work has been published in Studia Logica [2].Fil: Cornejo, Juan Manuel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Instituto de Matemática Bahía Blanca. Universidad Nacional del Sur. Departamento de Matemática. Instituto de Matemática Bahía Blanca; ArgentinaFil: Viglizzo, Ignacio Dario. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Instituto de Matemática Bahía Blanca. Universidad Nacional del Sur. Departamento de Matemática. Instituto de Matemática Bahía Blanca; ArgentinaXIII Congreso Dr. Antonio MonteiroBahia BlancaArgentinaUniversidad Nacional del Sur. Departamento de MatemáticaInstituto de Matemática de Bahía BlancaInstituto de Matemática de Bahía Blanca2015info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/conferenceObjectCongresoJournalhttp://purl.org/coar/resource_type/c_5794info:ar-repo/semantics/documentoDeConferenciaapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/155487On some semi-intuitionistic logics; XIII Congreso Dr. Antonio Monteiro; Bahia Blanca; Argentina; 2015; 1430327-9170CONICET DigitalCONICETspainfo:eu-repo/semantics/altIdentifier/url/http://inmabb.conicet.gob.ar/publicaciones/actas-del-congreso-monteiro/13Internacionalinfo:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-03T10:07:53Zoai:ri.conicet.gov.ar:11336/155487instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-03 10:07:53.556CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv On some semi-intuitionistic logics
title On some semi-intuitionistic logics
spellingShingle On some semi-intuitionistic logics
Cornejo, Juan Manuel
LOGICA SEMI INTUICIONISTA
HEYTING
SEMI HEYTING
title_short On some semi-intuitionistic logics
title_full On some semi-intuitionistic logics
title_fullStr On some semi-intuitionistic logics
title_full_unstemmed On some semi-intuitionistic logics
title_sort On some semi-intuitionistic logics
dc.creator.none.fl_str_mv Cornejo, Juan Manuel
Viglizzo, Ignacio Dario
author Cornejo, Juan Manuel
author_facet Cornejo, Juan Manuel
Viglizzo, Ignacio Dario
author_role author
author2 Viglizzo, Ignacio Dario
author2_role author
dc.subject.none.fl_str_mv LOGICA SEMI INTUICIONISTA
HEYTING
SEMI HEYTING
topic LOGICA SEMI INTUICIONISTA
HEYTING
SEMI HEYTING
purl_subject.fl_str_mv https://purl.org/becyt/ford/1.1
https://purl.org/becyt/ford/1
dc.description.none.fl_txt_mv Semi-intuitionistic logic is the logic counterpart to semi-Heyting algebras, which weredefined by H. P. Sankappanavar in [3] as a variety generalizing the one of Heyting algebraswhile retaining some important features, like the fact that they are all pseudocomplementeddistributive lattices and their congruences are determined by filters. Semi-Heyting algebrasare algebras A = hA,∨,∧,→,>,⊥i that satisfy the conditions:(SH1) hA,∨,∧,>,⊥i is a bounded lattice(SH2) x∧(x → y) ≈ x∧y(SH3) x∧(y → z) ≈ x∧[(x∧y) → (x∧z)](SH4) x → x ≈ >.We present a new, more streamlined set of axioms for semi-intuitionistic logic, which weprove translationally equivalent to the one introduced in [1]. We then study some formulasthat define a semi-Heyting implication, and specialize this study to the case in which theformulas use only the lattice operators and the intuitionistic implication. We prove thenthat all the logics thus obtained are equivalent to intuitionistic logic, and give their Kripkesemantics.This work has been published in Studia Logica [2].
Fil: Cornejo, Juan Manuel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Instituto de Matemática Bahía Blanca. Universidad Nacional del Sur. Departamento de Matemática. Instituto de Matemática Bahía Blanca; Argentina
Fil: Viglizzo, Ignacio Dario. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Instituto de Matemática Bahía Blanca. Universidad Nacional del Sur. Departamento de Matemática. Instituto de Matemática Bahía Blanca; Argentina
XIII Congreso Dr. Antonio Monteiro
Bahia Blanca
Argentina
Universidad Nacional del Sur. Departamento de Matemática
Instituto de Matemática de Bahía Blanca
description Semi-intuitionistic logic is the logic counterpart to semi-Heyting algebras, which weredefined by H. P. Sankappanavar in [3] as a variety generalizing the one of Heyting algebraswhile retaining some important features, like the fact that they are all pseudocomplementeddistributive lattices and their congruences are determined by filters. Semi-Heyting algebrasare algebras A = hA,∨,∧,→,>,⊥i that satisfy the conditions:(SH1) hA,∨,∧,>,⊥i is a bounded lattice(SH2) x∧(x → y) ≈ x∧y(SH3) x∧(y → z) ≈ x∧[(x∧y) → (x∧z)](SH4) x → x ≈ >.We present a new, more streamlined set of axioms for semi-intuitionistic logic, which weprove translationally equivalent to the one introduced in [1]. We then study some formulasthat define a semi-Heyting implication, and specialize this study to the case in which theformulas use only the lattice operators and the intuitionistic implication. We prove thenthat all the logics thus obtained are equivalent to intuitionistic logic, and give their Kripkesemantics.This work has been published in Studia Logica [2].
publishDate 2015
dc.date.none.fl_str_mv 2015
dc.type.none.fl_str_mv info:eu-repo/semantics/publishedVersion
info:eu-repo/semantics/conferenceObject
Congreso
Journal
http://purl.org/coar/resource_type/c_5794
info:ar-repo/semantics/documentoDeConferencia
status_str publishedVersion
format conferenceObject
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/155487
On some semi-intuitionistic logics; XIII Congreso Dr. Antonio Monteiro; Bahia Blanca; Argentina; 2015; 143
0327-9170
CONICET Digital
CONICET
url http://hdl.handle.net/11336/155487
identifier_str_mv On some semi-intuitionistic logics; XIII Congreso Dr. Antonio Monteiro; Bahia Blanca; Argentina; 2015; 143
0327-9170
CONICET Digital
CONICET
dc.language.none.fl_str_mv spa
language spa
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/url/http://inmabb.conicet.gob.ar/publicaciones/actas-del-congreso-monteiro/13
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
application/pdf
dc.coverage.none.fl_str_mv Internacional
dc.publisher.none.fl_str_mv Instituto de Matemática de Bahía Blanca
publisher.none.fl_str_mv Instituto de Matemática de Bahía Blanca
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1842270022058115072
score 13.13397