Formaldehyde in the tropical western pacific: Chemical sources and sinks, convective transport, and representation in CAM-Chem and the CCMI models

Autores
Anderson, Daniel C.; Nicely, Julie M.; Wolfe, Glenn M.; Hanisco, Thomas F.; Salawitch, Ross J.; Canty, Timothy P.; Dickerson, Russell R.; Apel, Eric C.; Baidar, Sunil; Bannan, Thomas J.; Blake, Nicola J.; Chen, Dexian; Dix, Barbara; Fernandez, Rafael Pedro; Hall, Samuel R.; Hornbrook, Rebecca S.; Huey, L. Gregory; Josse, Beatrice; Jöckel, Patrick; Kinnison, Douglas E.; Koenig, Theodore K.; Le Breton, Michael; Marécal, Virginie; Morgenstern, Olaf; Oman, Luke D.; Pan, Laura L.; Percival, Carl; Plummer, David; Revell, Laura E.; Rozanov, Eugene; Saiz-lopez, Alfonso; Stenke, Andrea; Sudo, Kengo; Tilmes, Simone; Ullmann, Kirk; Volkamer, Rainer; Weinheimer, Andrew J.; Zeng, Guang
Año de publicación
2017
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
Formaldehyde (HCHO) directly affects the atmospheric oxidative capacity through its effects onHOx. In remote marine environments, such as the tropical western Pacific (TWP), it is particularly importantto understand the processes controlling the abundance of HCHO because model output from these regions isused to correct satellite retrievals of HCHO. Here we have used observations from the Convective Transport ofActive Species in the Tropics (CONTRAST)field campaign, conducted during January and February 2014, toevaluate our understanding of the processes controlling the distribution of HCHO in the TWP as well as itsrepresentation in chemical transport/climate models. Observed HCHO mixing ratios varied from ~500 partsper trillion by volume (pptv) near the surface to ~75 pptv in the upper troposphere. Recent convectivetransport of near surface HCHO and its precursors, acetaldehyde and possibly methyl hydroperoxide,increased upper tropospheric HCHO mixing ratios by ~33% (22 pptv); this air contained roughly 60% less NOthan more aged air.Output from the CAM-Chem chemistry transport model (2014 meteorology)as well asninechemistry climate models from the Chemistry-Climate Model Initiative (free-running meteorology) are foundto uniformly underestimate HCHO columns derived from in situ observations by between 4 and 50%. Thisunderestimate of HCHO likely results from a near factor of two underestimate of NO in most models, whichstrongly suggests errors in NOxemissions inventories and/or in the model chemical mechanisms. Likewise, thelack of oceanic acetaldehyde emissions and potential errors in the model acetaldehyde chemistry lead toadditional underestimates in modeled HCHO of up to 75 pptv (~15%) in the lower troposphere.
Fil: Anderson, Daniel C.. University of Maryland. Department of Atmospheric and Oceanic Science; Estados Unidos
Fil: Nicely, Julie M.. University of Maryland. Department of Atmospheric and Oceanic Science; Estados Unidos. University Space Research; Estados Unidos
Fil: Wolfe, Glenn M.. University of Maryland. Department of Atmospheric and Oceanic Science; Estados Unidos. National Aeronautics and Space Administration; Estados Unidos
Fil: Hanisco, Thomas F.. National Aeronautics and Space Administration; Estados Unidos
Fil: Salawitch, Ross J.. University of Maryland. Department of Atmospheric and Oceanic Science; Estados Unidos
Fil: Canty, Timothy P.. University of Maryland. Department of Atmospheric and Oceanic Science; Estados Unidos
Fil: Dickerson, Russell R.. University of Maryland. Department of Atmospheric and Oceanic Science; Estados Unidos
Fil: Apel, Eric C.. National Center For Atmospheric Research. Amospheric Chemistry División; Estados Unidos
Fil: Baidar, Sunil. State University of Colorado at Boulder; Estados Unidos. Cooperative Institute for Research in Environmental Sciences; Estados Unidos
Fil: Bannan, Thomas J.. University of Manchester; Reino Unido
Fil: Blake, Nicola J.. University of California; Estados Unidos
Fil: Chen, Dexian. Georgia Institute of Techology; Estados Unidos
Fil: Dix, Barbara. State University of Colorado at Boulder; Estados Unidos
Fil: Fernandez, Rafael Pedro. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mendoza; Argentina. Universidad Nacional de Cuyo. Facultad de Ciencias Exactas y Naturales; Argentina. Institute of Physical Chemistry Rocasolano,; España
Fil: Hall, Samuel R.. National Center For Atmospheric Research. Amospheric Chemistry División; Estados Unidos
Fil: Hornbrook, Rebecca S.. National Center For Atmospheric Research. Amospheric Chemistry División; Estados Unidos
Fil: Huey, L. Gregory. Georgia Institute of Techology; Estados Unidos
Fil: Josse, Beatrice. Centre National de Recherche Météorologique; Francia
Fil: Jöckel, Patrick. Deutsches Zentrum für Luft‐ und Raumfahrt, Institut für Physik der Atmosphäre; Alemania
Fil: Kinnison, Douglas E.. National Center for Atmospheric Research; Estados Unidos
Fil: Koenig, Theodore K.. State University of Colorado at Boulder; Estados Unidos
Fil: Le Breton, Michael. University of Gothenburg; Suecia
Fil: Marécal, Virginie. Centre National de Recherche Météorologique; Francia
Fil: Morgenstern, Olaf. National Institute of Water and Atmospheric Research; Nueva Zelanda
Fil: Oman, Luke D.. National Aeronautics and Space Administration; Estados Unidos
Fil: Pan, Laura L.. National Center for Atmospheric Research; Estados Unidos
Fil: Percival, Carl. University of Manchester; Reino Unido
Fil: Plummer, David. Canadian Centre for Climate Modeling and Analysis; Canadá
Fil: Revell, Laura E.. Institute for Atmospheric and Climate Science; Suiza
Fil: Rozanov, Eugene. Physikalisch-meteorologisches Observatorium Davos World Radiation Center; Suiza
Fil: Saiz-lopez, Alfonso. Consejo Superior de Investigaciones Científicas. Instituto de Química Física; España
Fil: Stenke, Andrea. Eth Zürich; Suiza
Fil: Sudo, Kengo. Japan Agency For Marin-earth Science And Technology; Japón
Fil: Tilmes, Simone. National Center for Atmospheric Research; Estados Unidos
Fil: Ullmann, Kirk. National Center for Atmospheric Research; Estados Unidos
Fil: Volkamer, Rainer. State University of Colorado at Boulder; Estados Unidos
Fil: Weinheimer, Andrew J.. National Center for Atmospheric Research; Estados Unidos
Fil: Zeng, Guang. National Institute Of Water And Atmospheric Research; Nueva Zelanda
Materia
Formaldehide
Oxidative Capacity Of the Atmosphere
Contrast
Cam-Chem
Ccmi
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/78265

id CONICETDig_867f157e51b39fc783bbf8c81e205009
oai_identifier_str oai:ri.conicet.gov.ar:11336/78265
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling Formaldehyde in the tropical western pacific: Chemical sources and sinks, convective transport, and representation in CAM-Chem and the CCMI modelsAnderson, Daniel C.Nicely, Julie M.Wolfe, Glenn M.Hanisco, Thomas F.Salawitch, Ross J.Canty, Timothy P.Dickerson, Russell R.Apel, Eric C.Baidar, SunilBannan, Thomas J.Blake, Nicola J.Chen, DexianDix, BarbaraFernandez, Rafael PedroHall, Samuel R.Hornbrook, Rebecca S.Huey, L. GregoryJosse, BeatriceJöckel, PatrickKinnison, Douglas E.Koenig, Theodore K.Le Breton, MichaelMarécal, VirginieMorgenstern, OlafOman, Luke D.Pan, Laura L.Percival, CarlPlummer, DavidRevell, Laura E.Rozanov, EugeneSaiz-lopez, AlfonsoStenke, AndreaSudo, KengoTilmes, SimoneUllmann, KirkVolkamer, RainerWeinheimer, Andrew J.Zeng, GuangFormaldehideOxidative Capacity Of the AtmosphereContrastCam-ChemCcmihttps://purl.org/becyt/ford/1.5https://purl.org/becyt/ford/1Formaldehyde (HCHO) directly affects the atmospheric oxidative capacity through its effects onHOx. In remote marine environments, such as the tropical western Pacific (TWP), it is particularly importantto understand the processes controlling the abundance of HCHO because model output from these regions isused to correct satellite retrievals of HCHO. Here we have used observations from the Convective Transport ofActive Species in the Tropics (CONTRAST)field campaign, conducted during January and February 2014, toevaluate our understanding of the processes controlling the distribution of HCHO in the TWP as well as itsrepresentation in chemical transport/climate models. Observed HCHO mixing ratios varied from ~500 partsper trillion by volume (pptv) near the surface to ~75 pptv in the upper troposphere. Recent convectivetransport of near surface HCHO and its precursors, acetaldehyde and possibly methyl hydroperoxide,increased upper tropospheric HCHO mixing ratios by ~33% (22 pptv); this air contained roughly 60% less NOthan more aged air.Output from the CAM-Chem chemistry transport model (2014 meteorology)as well asninechemistry climate models from the Chemistry-Climate Model Initiative (free-running meteorology) are foundto uniformly underestimate HCHO columns derived from in situ observations by between 4 and 50%. Thisunderestimate of HCHO likely results from a near factor of two underestimate of NO in most models, whichstrongly suggests errors in NOxemissions inventories and/or in the model chemical mechanisms. Likewise, thelack of oceanic acetaldehyde emissions and potential errors in the model acetaldehyde chemistry lead toadditional underestimates in modeled HCHO of up to 75 pptv (~15%) in the lower troposphere.Fil: Anderson, Daniel C.. University of Maryland. Department of Atmospheric and Oceanic Science; Estados UnidosFil: Nicely, Julie M.. University of Maryland. Department of Atmospheric and Oceanic Science; Estados Unidos. University Space Research; Estados UnidosFil: Wolfe, Glenn M.. University of Maryland. Department of Atmospheric and Oceanic Science; Estados Unidos. National Aeronautics and Space Administration; Estados UnidosFil: Hanisco, Thomas F.. National Aeronautics and Space Administration; Estados UnidosFil: Salawitch, Ross J.. University of Maryland. Department of Atmospheric and Oceanic Science; Estados UnidosFil: Canty, Timothy P.. University of Maryland. Department of Atmospheric and Oceanic Science; Estados UnidosFil: Dickerson, Russell R.. University of Maryland. Department of Atmospheric and Oceanic Science; Estados UnidosFil: Apel, Eric C.. National Center For Atmospheric Research. Amospheric Chemistry División; Estados UnidosFil: Baidar, Sunil. State University of Colorado at Boulder; Estados Unidos. Cooperative Institute for Research in Environmental Sciences; Estados UnidosFil: Bannan, Thomas J.. University of Manchester; Reino UnidoFil: Blake, Nicola J.. University of California; Estados UnidosFil: Chen, Dexian. Georgia Institute of Techology; Estados UnidosFil: Dix, Barbara. State University of Colorado at Boulder; Estados UnidosFil: Fernandez, Rafael Pedro. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mendoza; Argentina. Universidad Nacional de Cuyo. Facultad de Ciencias Exactas y Naturales; Argentina. Institute of Physical Chemistry Rocasolano,; EspañaFil: Hall, Samuel R.. National Center For Atmospheric Research. Amospheric Chemistry División; Estados UnidosFil: Hornbrook, Rebecca S.. National Center For Atmospheric Research. Amospheric Chemistry División; Estados UnidosFil: Huey, L. Gregory. Georgia Institute of Techology; Estados UnidosFil: Josse, Beatrice. Centre National de Recherche Météorologique; FranciaFil: Jöckel, Patrick. Deutsches Zentrum für Luft‐ und Raumfahrt, Institut für Physik der Atmosphäre; AlemaniaFil: Kinnison, Douglas E.. National Center for Atmospheric Research; Estados UnidosFil: Koenig, Theodore K.. State University of Colorado at Boulder; Estados UnidosFil: Le Breton, Michael. University of Gothenburg; SueciaFil: Marécal, Virginie. Centre National de Recherche Météorologique; FranciaFil: Morgenstern, Olaf. National Institute of Water and Atmospheric Research; Nueva ZelandaFil: Oman, Luke D.. National Aeronautics and Space Administration; Estados UnidosFil: Pan, Laura L.. National Center for Atmospheric Research; Estados UnidosFil: Percival, Carl. University of Manchester; Reino UnidoFil: Plummer, David. Canadian Centre for Climate Modeling and Analysis; CanadáFil: Revell, Laura E.. Institute for Atmospheric and Climate Science; SuizaFil: Rozanov, Eugene. Physikalisch-meteorologisches Observatorium Davos World Radiation Center; SuizaFil: Saiz-lopez, Alfonso. Consejo Superior de Investigaciones Científicas. Instituto de Química Física; EspañaFil: Stenke, Andrea. Eth Zürich; SuizaFil: Sudo, Kengo. Japan Agency For Marin-earth Science And Technology; JapónFil: Tilmes, Simone. National Center for Atmospheric Research; Estados UnidosFil: Ullmann, Kirk. National Center for Atmospheric Research; Estados UnidosFil: Volkamer, Rainer. State University of Colorado at Boulder; Estados UnidosFil: Weinheimer, Andrew J.. National Center for Atmospheric Research; Estados UnidosFil: Zeng, Guang. National Institute Of Water And Atmospheric Research; Nueva ZelandaAmerican Geophysical Union2017-10info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/78265Anderson, Daniel C.; Nicely, Julie M.; Wolfe, Glenn M.; Hanisco, Thomas F.; Salawitch, Ross J.; et al.; Formaldehyde in the tropical western pacific: Chemical sources and sinks, convective transport, and representation in CAM-Chem and the CCMI models; American Geophysical Union; Journal of Geophysical Research: Atmospheres; 122; 20; 10-2017; 11201-112262169-8996CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/https://agupubs.onlinelibrary.wiley.com/doi/abs/10.1002/2016JD026121info:eu-repo/semantics/altIdentifier/doi/10.1002/2016JD026121info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T10:40:27Zoai:ri.conicet.gov.ar:11336/78265instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 10:40:28.099CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv Formaldehyde in the tropical western pacific: Chemical sources and sinks, convective transport, and representation in CAM-Chem and the CCMI models
title Formaldehyde in the tropical western pacific: Chemical sources and sinks, convective transport, and representation in CAM-Chem and the CCMI models
spellingShingle Formaldehyde in the tropical western pacific: Chemical sources and sinks, convective transport, and representation in CAM-Chem and the CCMI models
Anderson, Daniel C.
Formaldehide
Oxidative Capacity Of the Atmosphere
Contrast
Cam-Chem
Ccmi
title_short Formaldehyde in the tropical western pacific: Chemical sources and sinks, convective transport, and representation in CAM-Chem and the CCMI models
title_full Formaldehyde in the tropical western pacific: Chemical sources and sinks, convective transport, and representation in CAM-Chem and the CCMI models
title_fullStr Formaldehyde in the tropical western pacific: Chemical sources and sinks, convective transport, and representation in CAM-Chem and the CCMI models
title_full_unstemmed Formaldehyde in the tropical western pacific: Chemical sources and sinks, convective transport, and representation in CAM-Chem and the CCMI models
title_sort Formaldehyde in the tropical western pacific: Chemical sources and sinks, convective transport, and representation in CAM-Chem and the CCMI models
dc.creator.none.fl_str_mv Anderson, Daniel C.
Nicely, Julie M.
Wolfe, Glenn M.
Hanisco, Thomas F.
Salawitch, Ross J.
Canty, Timothy P.
Dickerson, Russell R.
Apel, Eric C.
Baidar, Sunil
Bannan, Thomas J.
Blake, Nicola J.
Chen, Dexian
Dix, Barbara
Fernandez, Rafael Pedro
Hall, Samuel R.
Hornbrook, Rebecca S.
Huey, L. Gregory
Josse, Beatrice
Jöckel, Patrick
Kinnison, Douglas E.
Koenig, Theodore K.
Le Breton, Michael
Marécal, Virginie
Morgenstern, Olaf
Oman, Luke D.
Pan, Laura L.
Percival, Carl
Plummer, David
Revell, Laura E.
Rozanov, Eugene
Saiz-lopez, Alfonso
Stenke, Andrea
Sudo, Kengo
Tilmes, Simone
Ullmann, Kirk
Volkamer, Rainer
Weinheimer, Andrew J.
Zeng, Guang
author Anderson, Daniel C.
author_facet Anderson, Daniel C.
Nicely, Julie M.
Wolfe, Glenn M.
Hanisco, Thomas F.
Salawitch, Ross J.
Canty, Timothy P.
Dickerson, Russell R.
Apel, Eric C.
Baidar, Sunil
Bannan, Thomas J.
Blake, Nicola J.
Chen, Dexian
Dix, Barbara
Fernandez, Rafael Pedro
Hall, Samuel R.
Hornbrook, Rebecca S.
Huey, L. Gregory
Josse, Beatrice
Jöckel, Patrick
Kinnison, Douglas E.
Koenig, Theodore K.
Le Breton, Michael
Marécal, Virginie
Morgenstern, Olaf
Oman, Luke D.
Pan, Laura L.
Percival, Carl
Plummer, David
Revell, Laura E.
Rozanov, Eugene
Saiz-lopez, Alfonso
Stenke, Andrea
Sudo, Kengo
Tilmes, Simone
Ullmann, Kirk
Volkamer, Rainer
Weinheimer, Andrew J.
Zeng, Guang
author_role author
author2 Nicely, Julie M.
Wolfe, Glenn M.
Hanisco, Thomas F.
Salawitch, Ross J.
Canty, Timothy P.
Dickerson, Russell R.
Apel, Eric C.
Baidar, Sunil
Bannan, Thomas J.
Blake, Nicola J.
Chen, Dexian
Dix, Barbara
Fernandez, Rafael Pedro
Hall, Samuel R.
Hornbrook, Rebecca S.
Huey, L. Gregory
Josse, Beatrice
Jöckel, Patrick
Kinnison, Douglas E.
Koenig, Theodore K.
Le Breton, Michael
Marécal, Virginie
Morgenstern, Olaf
Oman, Luke D.
Pan, Laura L.
Percival, Carl
Plummer, David
Revell, Laura E.
Rozanov, Eugene
Saiz-lopez, Alfonso
Stenke, Andrea
Sudo, Kengo
Tilmes, Simone
Ullmann, Kirk
Volkamer, Rainer
Weinheimer, Andrew J.
Zeng, Guang
author2_role author
author
author
author
author
author
author
author
author
author
author
author
author
author
author
author
author
author
author
author
author
author
author
author
author
author
author
author
author
author
author
author
author
author
author
author
author
dc.subject.none.fl_str_mv Formaldehide
Oxidative Capacity Of the Atmosphere
Contrast
Cam-Chem
Ccmi
topic Formaldehide
Oxidative Capacity Of the Atmosphere
Contrast
Cam-Chem
Ccmi
purl_subject.fl_str_mv https://purl.org/becyt/ford/1.5
https://purl.org/becyt/ford/1
dc.description.none.fl_txt_mv Formaldehyde (HCHO) directly affects the atmospheric oxidative capacity through its effects onHOx. In remote marine environments, such as the tropical western Pacific (TWP), it is particularly importantto understand the processes controlling the abundance of HCHO because model output from these regions isused to correct satellite retrievals of HCHO. Here we have used observations from the Convective Transport ofActive Species in the Tropics (CONTRAST)field campaign, conducted during January and February 2014, toevaluate our understanding of the processes controlling the distribution of HCHO in the TWP as well as itsrepresentation in chemical transport/climate models. Observed HCHO mixing ratios varied from ~500 partsper trillion by volume (pptv) near the surface to ~75 pptv in the upper troposphere. Recent convectivetransport of near surface HCHO and its precursors, acetaldehyde and possibly methyl hydroperoxide,increased upper tropospheric HCHO mixing ratios by ~33% (22 pptv); this air contained roughly 60% less NOthan more aged air.Output from the CAM-Chem chemistry transport model (2014 meteorology)as well asninechemistry climate models from the Chemistry-Climate Model Initiative (free-running meteorology) are foundto uniformly underestimate HCHO columns derived from in situ observations by between 4 and 50%. Thisunderestimate of HCHO likely results from a near factor of two underestimate of NO in most models, whichstrongly suggests errors in NOxemissions inventories and/or in the model chemical mechanisms. Likewise, thelack of oceanic acetaldehyde emissions and potential errors in the model acetaldehyde chemistry lead toadditional underestimates in modeled HCHO of up to 75 pptv (~15%) in the lower troposphere.
Fil: Anderson, Daniel C.. University of Maryland. Department of Atmospheric and Oceanic Science; Estados Unidos
Fil: Nicely, Julie M.. University of Maryland. Department of Atmospheric and Oceanic Science; Estados Unidos. University Space Research; Estados Unidos
Fil: Wolfe, Glenn M.. University of Maryland. Department of Atmospheric and Oceanic Science; Estados Unidos. National Aeronautics and Space Administration; Estados Unidos
Fil: Hanisco, Thomas F.. National Aeronautics and Space Administration; Estados Unidos
Fil: Salawitch, Ross J.. University of Maryland. Department of Atmospheric and Oceanic Science; Estados Unidos
Fil: Canty, Timothy P.. University of Maryland. Department of Atmospheric and Oceanic Science; Estados Unidos
Fil: Dickerson, Russell R.. University of Maryland. Department of Atmospheric and Oceanic Science; Estados Unidos
Fil: Apel, Eric C.. National Center For Atmospheric Research. Amospheric Chemistry División; Estados Unidos
Fil: Baidar, Sunil. State University of Colorado at Boulder; Estados Unidos. Cooperative Institute for Research in Environmental Sciences; Estados Unidos
Fil: Bannan, Thomas J.. University of Manchester; Reino Unido
Fil: Blake, Nicola J.. University of California; Estados Unidos
Fil: Chen, Dexian. Georgia Institute of Techology; Estados Unidos
Fil: Dix, Barbara. State University of Colorado at Boulder; Estados Unidos
Fil: Fernandez, Rafael Pedro. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mendoza; Argentina. Universidad Nacional de Cuyo. Facultad de Ciencias Exactas y Naturales; Argentina. Institute of Physical Chemistry Rocasolano,; España
Fil: Hall, Samuel R.. National Center For Atmospheric Research. Amospheric Chemistry División; Estados Unidos
Fil: Hornbrook, Rebecca S.. National Center For Atmospheric Research. Amospheric Chemistry División; Estados Unidos
Fil: Huey, L. Gregory. Georgia Institute of Techology; Estados Unidos
Fil: Josse, Beatrice. Centre National de Recherche Météorologique; Francia
Fil: Jöckel, Patrick. Deutsches Zentrum für Luft‐ und Raumfahrt, Institut für Physik der Atmosphäre; Alemania
Fil: Kinnison, Douglas E.. National Center for Atmospheric Research; Estados Unidos
Fil: Koenig, Theodore K.. State University of Colorado at Boulder; Estados Unidos
Fil: Le Breton, Michael. University of Gothenburg; Suecia
Fil: Marécal, Virginie. Centre National de Recherche Météorologique; Francia
Fil: Morgenstern, Olaf. National Institute of Water and Atmospheric Research; Nueva Zelanda
Fil: Oman, Luke D.. National Aeronautics and Space Administration; Estados Unidos
Fil: Pan, Laura L.. National Center for Atmospheric Research; Estados Unidos
Fil: Percival, Carl. University of Manchester; Reino Unido
Fil: Plummer, David. Canadian Centre for Climate Modeling and Analysis; Canadá
Fil: Revell, Laura E.. Institute for Atmospheric and Climate Science; Suiza
Fil: Rozanov, Eugene. Physikalisch-meteorologisches Observatorium Davos World Radiation Center; Suiza
Fil: Saiz-lopez, Alfonso. Consejo Superior de Investigaciones Científicas. Instituto de Química Física; España
Fil: Stenke, Andrea. Eth Zürich; Suiza
Fil: Sudo, Kengo. Japan Agency For Marin-earth Science And Technology; Japón
Fil: Tilmes, Simone. National Center for Atmospheric Research; Estados Unidos
Fil: Ullmann, Kirk. National Center for Atmospheric Research; Estados Unidos
Fil: Volkamer, Rainer. State University of Colorado at Boulder; Estados Unidos
Fil: Weinheimer, Andrew J.. National Center for Atmospheric Research; Estados Unidos
Fil: Zeng, Guang. National Institute Of Water And Atmospheric Research; Nueva Zelanda
description Formaldehyde (HCHO) directly affects the atmospheric oxidative capacity through its effects onHOx. In remote marine environments, such as the tropical western Pacific (TWP), it is particularly importantto understand the processes controlling the abundance of HCHO because model output from these regions isused to correct satellite retrievals of HCHO. Here we have used observations from the Convective Transport ofActive Species in the Tropics (CONTRAST)field campaign, conducted during January and February 2014, toevaluate our understanding of the processes controlling the distribution of HCHO in the TWP as well as itsrepresentation in chemical transport/climate models. Observed HCHO mixing ratios varied from ~500 partsper trillion by volume (pptv) near the surface to ~75 pptv in the upper troposphere. Recent convectivetransport of near surface HCHO and its precursors, acetaldehyde and possibly methyl hydroperoxide,increased upper tropospheric HCHO mixing ratios by ~33% (22 pptv); this air contained roughly 60% less NOthan more aged air.Output from the CAM-Chem chemistry transport model (2014 meteorology)as well asninechemistry climate models from the Chemistry-Climate Model Initiative (free-running meteorology) are foundto uniformly underestimate HCHO columns derived from in situ observations by between 4 and 50%. Thisunderestimate of HCHO likely results from a near factor of two underestimate of NO in most models, whichstrongly suggests errors in NOxemissions inventories and/or in the model chemical mechanisms. Likewise, thelack of oceanic acetaldehyde emissions and potential errors in the model acetaldehyde chemistry lead toadditional underestimates in modeled HCHO of up to 75 pptv (~15%) in the lower troposphere.
publishDate 2017
dc.date.none.fl_str_mv 2017-10
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/78265
Anderson, Daniel C.; Nicely, Julie M.; Wolfe, Glenn M.; Hanisco, Thomas F.; Salawitch, Ross J.; et al.; Formaldehyde in the tropical western pacific: Chemical sources and sinks, convective transport, and representation in CAM-Chem and the CCMI models; American Geophysical Union; Journal of Geophysical Research: Atmospheres; 122; 20; 10-2017; 11201-11226
2169-8996
CONICET Digital
CONICET
url http://hdl.handle.net/11336/78265
identifier_str_mv Anderson, Daniel C.; Nicely, Julie M.; Wolfe, Glenn M.; Hanisco, Thomas F.; Salawitch, Ross J.; et al.; Formaldehyde in the tropical western pacific: Chemical sources and sinks, convective transport, and representation in CAM-Chem and the CCMI models; American Geophysical Union; Journal of Geophysical Research: Atmospheres; 122; 20; 10-2017; 11201-11226
2169-8996
CONICET Digital
CONICET
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/url/https://agupubs.onlinelibrary.wiley.com/doi/abs/10.1002/2016JD026121
info:eu-repo/semantics/altIdentifier/doi/10.1002/2016JD026121
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
dc.publisher.none.fl_str_mv American Geophysical Union
publisher.none.fl_str_mv American Geophysical Union
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1844614432918863872
score 13.070432