Stochastic forestry harvest planning under soil compaction conditions
- Autores
- Rossit, Daniel Alejandro; Pais, Cristóbal; Weintraub, Andrés; Broz, Diego Ricardo; Frutos, Mariano; Tohmé, Fernando Abel
- Año de publicación
- 2021
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- We present a study of annual forestry harvesting planning considering the risk of compaction generated by the transit of heavy forestry machinery. Soil compaction is a problem that occurs when the soil loses its natural resistance to resist the movement of machinery, causing the soil to be compacted in excess. This compaction generates unwanted effects on both the ecosystem and its economic sustainability. Therefore, when the risk of compaction is considerable, harvest operations must be stopped, complicating the annual plan and incurring in excessive costs to alleviate the situation. To incorporate the risk of compaction into the planning process, it is necessary to incorporate the analysis of the soil´s hydrological balance, which combines the effect of rainfall and potential evapotranspiration. This requires analyzing the uncertainty of rainfall regimes, for which we propose a stochastic model under different scenarios. This stochastic model yields better results than the current deterministic methods used by lumber companies. Initially, the model is solved analyzing monthly scenarios. Then, we change to a biweekly model that provides a better representation of the dynamics of the system. While this improves the performance of the model, this new formulation increases the number of scenarios of the stochastic model. To address this complexity, we apply the Progressive Hedging method, which decomposes the problem in scenarios, yielding high-quality solutions in reasonable time.
Fil: Rossit, Daniel Alejandro. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Instituto de Matemática Bahía Blanca. Universidad Nacional del Sur. Departamento de Matemática. Instituto de Matemática Bahía Blanca; Argentina
Fil: Pais, Cristóbal. University of California at Berkeley; Estados Unidos
Fil: Weintraub, Andrés. Universidad de Chile; Chile
Fil: Broz, Diego Ricardo. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad Nacional de Misiones; Argentina
Fil: Frutos, Mariano. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Instituto de Investigaciones Económicas y Sociales del Sur. Universidad Nacional del Sur. Departamento de Economía. Instituto de Investigaciones Económicas y Sociales del Sur; Argentina
Fil: Tohmé, Fernando Abel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Instituto de Matemática Bahía Blanca. Universidad Nacional del Sur. Departamento de Matemática. Instituto de Matemática Bahía Blanca; Argentina - Materia
-
FOREST HARVEST PLANNING
PROGRESSIVE HEDGING
RAINFALL REGIME
SOIL COMPACTION
STOCHASTIC MODELLING
SUSTAINABLE MANAGEMENT - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/140296
Ver los metadatos del registro completo
id |
CONICETDig_8640f92226cf724069897834df9ac409 |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/140296 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Stochastic forestry harvest planning under soil compaction conditionsRossit, Daniel AlejandroPais, CristóbalWeintraub, AndrésBroz, Diego RicardoFrutos, MarianoTohmé, Fernando AbelFOREST HARVEST PLANNINGPROGRESSIVE HEDGINGRAINFALL REGIMESOIL COMPACTIONSTOCHASTIC MODELLINGSUSTAINABLE MANAGEMENThttps://purl.org/becyt/ford/2.7https://purl.org/becyt/ford/2We present a study of annual forestry harvesting planning considering the risk of compaction generated by the transit of heavy forestry machinery. Soil compaction is a problem that occurs when the soil loses its natural resistance to resist the movement of machinery, causing the soil to be compacted in excess. This compaction generates unwanted effects on both the ecosystem and its economic sustainability. Therefore, when the risk of compaction is considerable, harvest operations must be stopped, complicating the annual plan and incurring in excessive costs to alleviate the situation. To incorporate the risk of compaction into the planning process, it is necessary to incorporate the analysis of the soil´s hydrological balance, which combines the effect of rainfall and potential evapotranspiration. This requires analyzing the uncertainty of rainfall regimes, for which we propose a stochastic model under different scenarios. This stochastic model yields better results than the current deterministic methods used by lumber companies. Initially, the model is solved analyzing monthly scenarios. Then, we change to a biweekly model that provides a better representation of the dynamics of the system. While this improves the performance of the model, this new formulation increases the number of scenarios of the stochastic model. To address this complexity, we apply the Progressive Hedging method, which decomposes the problem in scenarios, yielding high-quality solutions in reasonable time.Fil: Rossit, Daniel Alejandro. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Instituto de Matemática Bahía Blanca. Universidad Nacional del Sur. Departamento de Matemática. Instituto de Matemática Bahía Blanca; ArgentinaFil: Pais, Cristóbal. University of California at Berkeley; Estados UnidosFil: Weintraub, Andrés. Universidad de Chile; ChileFil: Broz, Diego Ricardo. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad Nacional de Misiones; ArgentinaFil: Frutos, Mariano. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Instituto de Investigaciones Económicas y Sociales del Sur. Universidad Nacional del Sur. Departamento de Economía. Instituto de Investigaciones Económicas y Sociales del Sur; ArgentinaFil: Tohmé, Fernando Abel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Instituto de Matemática Bahía Blanca. Universidad Nacional del Sur. Departamento de Matemática. Instituto de Matemática Bahía Blanca; ArgentinaAcademic Press Ltd - Elsevier Science Ltd2021-10-15info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/140296Rossit, Daniel Alejandro; Pais, Cristóbal; Weintraub, Andrés; Broz, Diego Ricardo; Frutos, Mariano; et al.; Stochastic forestry harvest planning under soil compaction conditions; Academic Press Ltd - Elsevier Science Ltd; Journal of Environmental Management; 296; 15-10-2021; 1-420301-47971095-8630CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/https://www.sciencedirect.com/science/article/pii/S0301479721012196info:eu-repo/semantics/altIdentifier/doi/10.1016/j.jenvman.2021.113157info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T09:45:03Zoai:ri.conicet.gov.ar:11336/140296instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 09:45:03.461CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Stochastic forestry harvest planning under soil compaction conditions |
title |
Stochastic forestry harvest planning under soil compaction conditions |
spellingShingle |
Stochastic forestry harvest planning under soil compaction conditions Rossit, Daniel Alejandro FOREST HARVEST PLANNING PROGRESSIVE HEDGING RAINFALL REGIME SOIL COMPACTION STOCHASTIC MODELLING SUSTAINABLE MANAGEMENT |
title_short |
Stochastic forestry harvest planning under soil compaction conditions |
title_full |
Stochastic forestry harvest planning under soil compaction conditions |
title_fullStr |
Stochastic forestry harvest planning under soil compaction conditions |
title_full_unstemmed |
Stochastic forestry harvest planning under soil compaction conditions |
title_sort |
Stochastic forestry harvest planning under soil compaction conditions |
dc.creator.none.fl_str_mv |
Rossit, Daniel Alejandro Pais, Cristóbal Weintraub, Andrés Broz, Diego Ricardo Frutos, Mariano Tohmé, Fernando Abel |
author |
Rossit, Daniel Alejandro |
author_facet |
Rossit, Daniel Alejandro Pais, Cristóbal Weintraub, Andrés Broz, Diego Ricardo Frutos, Mariano Tohmé, Fernando Abel |
author_role |
author |
author2 |
Pais, Cristóbal Weintraub, Andrés Broz, Diego Ricardo Frutos, Mariano Tohmé, Fernando Abel |
author2_role |
author author author author author |
dc.subject.none.fl_str_mv |
FOREST HARVEST PLANNING PROGRESSIVE HEDGING RAINFALL REGIME SOIL COMPACTION STOCHASTIC MODELLING SUSTAINABLE MANAGEMENT |
topic |
FOREST HARVEST PLANNING PROGRESSIVE HEDGING RAINFALL REGIME SOIL COMPACTION STOCHASTIC MODELLING SUSTAINABLE MANAGEMENT |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/2.7 https://purl.org/becyt/ford/2 |
dc.description.none.fl_txt_mv |
We present a study of annual forestry harvesting planning considering the risk of compaction generated by the transit of heavy forestry machinery. Soil compaction is a problem that occurs when the soil loses its natural resistance to resist the movement of machinery, causing the soil to be compacted in excess. This compaction generates unwanted effects on both the ecosystem and its economic sustainability. Therefore, when the risk of compaction is considerable, harvest operations must be stopped, complicating the annual plan and incurring in excessive costs to alleviate the situation. To incorporate the risk of compaction into the planning process, it is necessary to incorporate the analysis of the soil´s hydrological balance, which combines the effect of rainfall and potential evapotranspiration. This requires analyzing the uncertainty of rainfall regimes, for which we propose a stochastic model under different scenarios. This stochastic model yields better results than the current deterministic methods used by lumber companies. Initially, the model is solved analyzing monthly scenarios. Then, we change to a biweekly model that provides a better representation of the dynamics of the system. While this improves the performance of the model, this new formulation increases the number of scenarios of the stochastic model. To address this complexity, we apply the Progressive Hedging method, which decomposes the problem in scenarios, yielding high-quality solutions in reasonable time. Fil: Rossit, Daniel Alejandro. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Instituto de Matemática Bahía Blanca. Universidad Nacional del Sur. Departamento de Matemática. Instituto de Matemática Bahía Blanca; Argentina Fil: Pais, Cristóbal. University of California at Berkeley; Estados Unidos Fil: Weintraub, Andrés. Universidad de Chile; Chile Fil: Broz, Diego Ricardo. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad Nacional de Misiones; Argentina Fil: Frutos, Mariano. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Instituto de Investigaciones Económicas y Sociales del Sur. Universidad Nacional del Sur. Departamento de Economía. Instituto de Investigaciones Económicas y Sociales del Sur; Argentina Fil: Tohmé, Fernando Abel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Instituto de Matemática Bahía Blanca. Universidad Nacional del Sur. Departamento de Matemática. Instituto de Matemática Bahía Blanca; Argentina |
description |
We present a study of annual forestry harvesting planning considering the risk of compaction generated by the transit of heavy forestry machinery. Soil compaction is a problem that occurs when the soil loses its natural resistance to resist the movement of machinery, causing the soil to be compacted in excess. This compaction generates unwanted effects on both the ecosystem and its economic sustainability. Therefore, when the risk of compaction is considerable, harvest operations must be stopped, complicating the annual plan and incurring in excessive costs to alleviate the situation. To incorporate the risk of compaction into the planning process, it is necessary to incorporate the analysis of the soil´s hydrological balance, which combines the effect of rainfall and potential evapotranspiration. This requires analyzing the uncertainty of rainfall regimes, for which we propose a stochastic model under different scenarios. This stochastic model yields better results than the current deterministic methods used by lumber companies. Initially, the model is solved analyzing monthly scenarios. Then, we change to a biweekly model that provides a better representation of the dynamics of the system. While this improves the performance of the model, this new formulation increases the number of scenarios of the stochastic model. To address this complexity, we apply the Progressive Hedging method, which decomposes the problem in scenarios, yielding high-quality solutions in reasonable time. |
publishDate |
2021 |
dc.date.none.fl_str_mv |
2021-10-15 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/140296 Rossit, Daniel Alejandro; Pais, Cristóbal; Weintraub, Andrés; Broz, Diego Ricardo; Frutos, Mariano; et al.; Stochastic forestry harvest planning under soil compaction conditions; Academic Press Ltd - Elsevier Science Ltd; Journal of Environmental Management; 296; 15-10-2021; 1-42 0301-4797 1095-8630 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/140296 |
identifier_str_mv |
Rossit, Daniel Alejandro; Pais, Cristóbal; Weintraub, Andrés; Broz, Diego Ricardo; Frutos, Mariano; et al.; Stochastic forestry harvest planning under soil compaction conditions; Academic Press Ltd - Elsevier Science Ltd; Journal of Environmental Management; 296; 15-10-2021; 1-42 0301-4797 1095-8630 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/url/https://www.sciencedirect.com/science/article/pii/S0301479721012196 info:eu-repo/semantics/altIdentifier/doi/10.1016/j.jenvman.2021.113157 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
Academic Press Ltd - Elsevier Science Ltd |
publisher.none.fl_str_mv |
Academic Press Ltd - Elsevier Science Ltd |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1844613416071725056 |
score |
13.070432 |