Uptake and intracellular traffic of siRNA dendriplexes in glioblastoma cells and macrophages
- Autores
- Perez, Ana Paula; Cosaka, María Luz; Romero, Eder Lilia; Morilla, María José
- Año de publicación
- 2011
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- Gene silencing using small interfering RNA (siRNA) is a promising new approach for glioblastoma. The endocytic uptake and delivery of siRNA to intracellular compartments could be enhanced by complexation with polyamidoamine dendrimers.In the present work, the uptake mechanisms and intracellular traffic of siRNA/generation 7 dendrimer complexes (siRNA dendriplexes) were screened in T98G glioblastoma and J774 macrophages. Methods: The effect of a set of chemical inhibitors of endocytosis on the uptake and silencing capacity of dendriplexes was determined by flow cytometry. Colocalization of fluorescent dendriplexes with endocytic markers and occurrence of intracellular dissociation were assessed by confocal laser scanning microscopy. Results: Uptake of siRNA dendriplexes by T98G cells was reduced by methyl-beta-cyclodextrin, genistein, and cytochalasine D, silencing activity was reduced by genistein; dendriplexes colocalized with cholera toxin subunit B. Therefore, caveolin-dependent endocytosis was involved both in the uptake and silencing activity of siRNA dendriplexes. On the other hand, uptake of siRNA dendriplexes by J774 cells was reduced by methyl-beta-cyclodextrin, genistein, chlorpromazine, chloroquine, cytochalasine D, and nocodazole, the silencing activity was not affected by chlorpromazine, genistein or chloroquine, and dendriplexes colocalized with transferrin and cholera toxin subunit B. Thus, both clathrin-dependent and caveolin-dependent endocytosis mediated the uptake and silencing activity of the siRNA dendriplexes. SiRNA dendriplexes were internalized at higher rates by T98G but induced lower silencing than in J774 cells. SiRNA dendriplexes showed relatively slow dissociation kinetics, and their escape towards the cytosol was not mediated by acidification independently of the uptake pathway. Conclusion: The extent of cellular uptake of siRNA dendriplexes was inversely related to their silencing activity. The higher silencing activity of siRNA dendriplexes in J774 cells could be ascribed to the contribution of clathrin-dependent and caveolin-dependent endocytosis vs only caveolin-dependent endocytosis in T98G cells.
Fil: Perez, Ana Paula. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad Nacional de Quilmes. Departamento de Ciencia y Tecnología; Argentina
Fil: Cosaka, María Luz. Universidad Nacional de Quilmes. Departamento de Ciencia y Tecnología; Argentina
Fil: Romero, Eder Lilia. Universidad Nacional de Quilmes. Departamento de Ciencia y Tecnología; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
Fil: Morilla, María José. Universidad Nacional de Quilmes. Departamento de Ciencia y Tecnología; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina - Materia
-
SILENCING
DENDRIMERS
CLATHRIN
CAVEOLIN - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
.jpg)
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/193973
Ver los metadatos del registro completo
| id |
CONICETDig_8596bee676f24bbc25d9b8edede7d153 |
|---|---|
| oai_identifier_str |
oai:ri.conicet.gov.ar:11336/193973 |
| network_acronym_str |
CONICETDig |
| repository_id_str |
3498 |
| network_name_str |
CONICET Digital (CONICET) |
| spelling |
Uptake and intracellular traffic of siRNA dendriplexes in glioblastoma cells and macrophagesPerez, Ana PaulaCosaka, María LuzRomero, Eder LiliaMorilla, María JoséSILENCINGDENDRIMERSCLATHRINCAVEOLINhttps://purl.org/becyt/ford/2.10https://purl.org/becyt/ford/2Gene silencing using small interfering RNA (siRNA) is a promising new approach for glioblastoma. The endocytic uptake and delivery of siRNA to intracellular compartments could be enhanced by complexation with polyamidoamine dendrimers.In the present work, the uptake mechanisms and intracellular traffic of siRNA/generation 7 dendrimer complexes (siRNA dendriplexes) were screened in T98G glioblastoma and J774 macrophages. Methods: The effect of a set of chemical inhibitors of endocytosis on the uptake and silencing capacity of dendriplexes was determined by flow cytometry. Colocalization of fluorescent dendriplexes with endocytic markers and occurrence of intracellular dissociation were assessed by confocal laser scanning microscopy. Results: Uptake of siRNA dendriplexes by T98G cells was reduced by methyl-beta-cyclodextrin, genistein, and cytochalasine D, silencing activity was reduced by genistein; dendriplexes colocalized with cholera toxin subunit B. Therefore, caveolin-dependent endocytosis was involved both in the uptake and silencing activity of siRNA dendriplexes. On the other hand, uptake of siRNA dendriplexes by J774 cells was reduced by methyl-beta-cyclodextrin, genistein, chlorpromazine, chloroquine, cytochalasine D, and nocodazole, the silencing activity was not affected by chlorpromazine, genistein or chloroquine, and dendriplexes colocalized with transferrin and cholera toxin subunit B. Thus, both clathrin-dependent and caveolin-dependent endocytosis mediated the uptake and silencing activity of the siRNA dendriplexes. SiRNA dendriplexes were internalized at higher rates by T98G but induced lower silencing than in J774 cells. SiRNA dendriplexes showed relatively slow dissociation kinetics, and their escape towards the cytosol was not mediated by acidification independently of the uptake pathway. Conclusion: The extent of cellular uptake of siRNA dendriplexes was inversely related to their silencing activity. The higher silencing activity of siRNA dendriplexes in J774 cells could be ascribed to the contribution of clathrin-dependent and caveolin-dependent endocytosis vs only caveolin-dependent endocytosis in T98G cells.Fil: Perez, Ana Paula. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad Nacional de Quilmes. Departamento de Ciencia y Tecnología; ArgentinaFil: Cosaka, María Luz. Universidad Nacional de Quilmes. Departamento de Ciencia y Tecnología; ArgentinaFil: Romero, Eder Lilia. Universidad Nacional de Quilmes. Departamento de Ciencia y Tecnología; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Morilla, María José. Universidad Nacional de Quilmes. Departamento de Ciencia y Tecnología; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaDove Press2011-11info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/193973Perez, Ana Paula; Cosaka, María Luz; Romero, Eder Lilia; Morilla, María José; Uptake and intracellular traffic of siRNA dendriplexes in glioblastoma cells and macrophages; Dove Press; International Journal of Nanomedicine; 6; 11-2011; 2715-27281176-91141178-2013CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/doi/10.2147/IJN.S25235info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-10-22T12:16:56Zoai:ri.conicet.gov.ar:11336/193973instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-10-22 12:16:56.577CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
| dc.title.none.fl_str_mv |
Uptake and intracellular traffic of siRNA dendriplexes in glioblastoma cells and macrophages |
| title |
Uptake and intracellular traffic of siRNA dendriplexes in glioblastoma cells and macrophages |
| spellingShingle |
Uptake and intracellular traffic of siRNA dendriplexes in glioblastoma cells and macrophages Perez, Ana Paula SILENCING DENDRIMERS CLATHRIN CAVEOLIN |
| title_short |
Uptake and intracellular traffic of siRNA dendriplexes in glioblastoma cells and macrophages |
| title_full |
Uptake and intracellular traffic of siRNA dendriplexes in glioblastoma cells and macrophages |
| title_fullStr |
Uptake and intracellular traffic of siRNA dendriplexes in glioblastoma cells and macrophages |
| title_full_unstemmed |
Uptake and intracellular traffic of siRNA dendriplexes in glioblastoma cells and macrophages |
| title_sort |
Uptake and intracellular traffic of siRNA dendriplexes in glioblastoma cells and macrophages |
| dc.creator.none.fl_str_mv |
Perez, Ana Paula Cosaka, María Luz Romero, Eder Lilia Morilla, María José |
| author |
Perez, Ana Paula |
| author_facet |
Perez, Ana Paula Cosaka, María Luz Romero, Eder Lilia Morilla, María José |
| author_role |
author |
| author2 |
Cosaka, María Luz Romero, Eder Lilia Morilla, María José |
| author2_role |
author author author |
| dc.subject.none.fl_str_mv |
SILENCING DENDRIMERS CLATHRIN CAVEOLIN |
| topic |
SILENCING DENDRIMERS CLATHRIN CAVEOLIN |
| purl_subject.fl_str_mv |
https://purl.org/becyt/ford/2.10 https://purl.org/becyt/ford/2 |
| dc.description.none.fl_txt_mv |
Gene silencing using small interfering RNA (siRNA) is a promising new approach for glioblastoma. The endocytic uptake and delivery of siRNA to intracellular compartments could be enhanced by complexation with polyamidoamine dendrimers.In the present work, the uptake mechanisms and intracellular traffic of siRNA/generation 7 dendrimer complexes (siRNA dendriplexes) were screened in T98G glioblastoma and J774 macrophages. Methods: The effect of a set of chemical inhibitors of endocytosis on the uptake and silencing capacity of dendriplexes was determined by flow cytometry. Colocalization of fluorescent dendriplexes with endocytic markers and occurrence of intracellular dissociation were assessed by confocal laser scanning microscopy. Results: Uptake of siRNA dendriplexes by T98G cells was reduced by methyl-beta-cyclodextrin, genistein, and cytochalasine D, silencing activity was reduced by genistein; dendriplexes colocalized with cholera toxin subunit B. Therefore, caveolin-dependent endocytosis was involved both in the uptake and silencing activity of siRNA dendriplexes. On the other hand, uptake of siRNA dendriplexes by J774 cells was reduced by methyl-beta-cyclodextrin, genistein, chlorpromazine, chloroquine, cytochalasine D, and nocodazole, the silencing activity was not affected by chlorpromazine, genistein or chloroquine, and dendriplexes colocalized with transferrin and cholera toxin subunit B. Thus, both clathrin-dependent and caveolin-dependent endocytosis mediated the uptake and silencing activity of the siRNA dendriplexes. SiRNA dendriplexes were internalized at higher rates by T98G but induced lower silencing than in J774 cells. SiRNA dendriplexes showed relatively slow dissociation kinetics, and their escape towards the cytosol was not mediated by acidification independently of the uptake pathway. Conclusion: The extent of cellular uptake of siRNA dendriplexes was inversely related to their silencing activity. The higher silencing activity of siRNA dendriplexes in J774 cells could be ascribed to the contribution of clathrin-dependent and caveolin-dependent endocytosis vs only caveolin-dependent endocytosis in T98G cells. Fil: Perez, Ana Paula. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad Nacional de Quilmes. Departamento de Ciencia y Tecnología; Argentina Fil: Cosaka, María Luz. Universidad Nacional de Quilmes. Departamento de Ciencia y Tecnología; Argentina Fil: Romero, Eder Lilia. Universidad Nacional de Quilmes. Departamento de Ciencia y Tecnología; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina Fil: Morilla, María José. Universidad Nacional de Quilmes. Departamento de Ciencia y Tecnología; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina |
| description |
Gene silencing using small interfering RNA (siRNA) is a promising new approach for glioblastoma. The endocytic uptake and delivery of siRNA to intracellular compartments could be enhanced by complexation with polyamidoamine dendrimers.In the present work, the uptake mechanisms and intracellular traffic of siRNA/generation 7 dendrimer complexes (siRNA dendriplexes) were screened in T98G glioblastoma and J774 macrophages. Methods: The effect of a set of chemical inhibitors of endocytosis on the uptake and silencing capacity of dendriplexes was determined by flow cytometry. Colocalization of fluorescent dendriplexes with endocytic markers and occurrence of intracellular dissociation were assessed by confocal laser scanning microscopy. Results: Uptake of siRNA dendriplexes by T98G cells was reduced by methyl-beta-cyclodextrin, genistein, and cytochalasine D, silencing activity was reduced by genistein; dendriplexes colocalized with cholera toxin subunit B. Therefore, caveolin-dependent endocytosis was involved both in the uptake and silencing activity of siRNA dendriplexes. On the other hand, uptake of siRNA dendriplexes by J774 cells was reduced by methyl-beta-cyclodextrin, genistein, chlorpromazine, chloroquine, cytochalasine D, and nocodazole, the silencing activity was not affected by chlorpromazine, genistein or chloroquine, and dendriplexes colocalized with transferrin and cholera toxin subunit B. Thus, both clathrin-dependent and caveolin-dependent endocytosis mediated the uptake and silencing activity of the siRNA dendriplexes. SiRNA dendriplexes were internalized at higher rates by T98G but induced lower silencing than in J774 cells. SiRNA dendriplexes showed relatively slow dissociation kinetics, and their escape towards the cytosol was not mediated by acidification independently of the uptake pathway. Conclusion: The extent of cellular uptake of siRNA dendriplexes was inversely related to their silencing activity. The higher silencing activity of siRNA dendriplexes in J774 cells could be ascribed to the contribution of clathrin-dependent and caveolin-dependent endocytosis vs only caveolin-dependent endocytosis in T98G cells. |
| publishDate |
2011 |
| dc.date.none.fl_str_mv |
2011-11 |
| dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
| format |
article |
| status_str |
publishedVersion |
| dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/193973 Perez, Ana Paula; Cosaka, María Luz; Romero, Eder Lilia; Morilla, María José; Uptake and intracellular traffic of siRNA dendriplexes in glioblastoma cells and macrophages; Dove Press; International Journal of Nanomedicine; 6; 11-2011; 2715-2728 1176-9114 1178-2013 CONICET Digital CONICET |
| url |
http://hdl.handle.net/11336/193973 |
| identifier_str_mv |
Perez, Ana Paula; Cosaka, María Luz; Romero, Eder Lilia; Morilla, María José; Uptake and intracellular traffic of siRNA dendriplexes in glioblastoma cells and macrophages; Dove Press; International Journal of Nanomedicine; 6; 11-2011; 2715-2728 1176-9114 1178-2013 CONICET Digital CONICET |
| dc.language.none.fl_str_mv |
eng |
| language |
eng |
| dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/doi/10.2147/IJN.S25235 |
| dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
| eu_rights_str_mv |
openAccess |
| rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
| dc.format.none.fl_str_mv |
application/pdf application/pdf application/pdf application/pdf |
| dc.publisher.none.fl_str_mv |
Dove Press |
| publisher.none.fl_str_mv |
Dove Press |
| dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
| reponame_str |
CONICET Digital (CONICET) |
| collection |
CONICET Digital (CONICET) |
| instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
| repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
| repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
| _version_ |
1846782591512870912 |
| score |
12.982451 |