Percolation of heteronuclear dimers irreversibly deposited on square lattices

Autores
Gimenez, Maria Cecilia; Ramirez Pastor, Antonio Jose
Año de publicación
2016
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
The percolation problem of irreversibly deposited heteronuclear dimers on square lattices is studied. A dimer is composed of two segments, and it occupies two adjacent adsorption sites. Each segment can be either a conductive segment (segment type A) or a nonconductive segment (segment type B). Three types of dimers are considered: AA, BB, and AB. The connectivity analysis is carried out by accounting only for the conductive segments (segments type A). The model offers a simplified representation of the problem of percolation of defective (nonideal) particles, where the presence of defects in the system is simulated by introducing a mixture of conductive and nonconductive segments. Different cases were investigated, according to the sequence of deposition of the particles, the types of dimers involved in the process, and the degree of alignment of the deposited objects. By means of numerical simulations and finite-size scaling analysis, the complete phase diagram separating a percolating from a nonpercolating region was determined for each case. Finally, the consistency of our results was examined by comparing with previous data in the literature for linear k-mers (particles occupying k adjacent sites) with defects.
Fil: Gimenez, Maria Cecilia. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Instituto de Física Enrique Gaviola. Universidad Nacional de Córdoba. Instituto de Física Enrique Gaviola; Argentina
Fil: Ramirez Pastor, Antonio Jose. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - San Luis. Instituto de Física Aplicada "Dr. Jorge Andrés Zgrablich". Universidad Nacional de San Luis. Facultad de Ciencias Físico Matemáticas y Naturales. Instituto de Física Aplicada "Dr. Jorge Andrés Zgrablich"; Argentina
Materia
Percolation
Numerical Simulations
Dimers
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/60593

id CONICETDig_e463602314919a7160bd1fc53df8549a
oai_identifier_str oai:ri.conicet.gov.ar:11336/60593
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling Percolation of heteronuclear dimers irreversibly deposited on square latticesGimenez, Maria CeciliaRamirez Pastor, Antonio JosePercolationNumerical SimulationsDimershttps://purl.org/becyt/ford/1.3https://purl.org/becyt/ford/1The percolation problem of irreversibly deposited heteronuclear dimers on square lattices is studied. A dimer is composed of two segments, and it occupies two adjacent adsorption sites. Each segment can be either a conductive segment (segment type A) or a nonconductive segment (segment type B). Three types of dimers are considered: AA, BB, and AB. The connectivity analysis is carried out by accounting only for the conductive segments (segments type A). The model offers a simplified representation of the problem of percolation of defective (nonideal) particles, where the presence of defects in the system is simulated by introducing a mixture of conductive and nonconductive segments. Different cases were investigated, according to the sequence of deposition of the particles, the types of dimers involved in the process, and the degree of alignment of the deposited objects. By means of numerical simulations and finite-size scaling analysis, the complete phase diagram separating a percolating from a nonpercolating region was determined for each case. Finally, the consistency of our results was examined by comparing with previous data in the literature for linear k-mers (particles occupying k adjacent sites) with defects.Fil: Gimenez, Maria Cecilia. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Instituto de Física Enrique Gaviola. Universidad Nacional de Córdoba. Instituto de Física Enrique Gaviola; ArgentinaFil: Ramirez Pastor, Antonio Jose. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - San Luis. Instituto de Física Aplicada "Dr. Jorge Andrés Zgrablich". Universidad Nacional de San Luis. Facultad de Ciencias Físico Matemáticas y Naturales. Instituto de Física Aplicada "Dr. Jorge Andrés Zgrablich"; ArgentinaAmerican Physical Society2016-09info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/60593Gimenez, Maria Cecilia; Ramirez Pastor, Antonio Jose; Percolation of heteronuclear dimers irreversibly deposited on square lattices; American Physical Society; Physical Review E; 94; 3; 9-2016; 1-6; 0321292470-0053CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/doi/10.1103/PhysRevE.94.032129info:eu-repo/semantics/altIdentifier/url/https://journals.aps.org/pre/abstract/10.1103/PhysRevE.94.032129info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-03T10:05:14Zoai:ri.conicet.gov.ar:11336/60593instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-03 10:05:14.589CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv Percolation of heteronuclear dimers irreversibly deposited on square lattices
title Percolation of heteronuclear dimers irreversibly deposited on square lattices
spellingShingle Percolation of heteronuclear dimers irreversibly deposited on square lattices
Gimenez, Maria Cecilia
Percolation
Numerical Simulations
Dimers
title_short Percolation of heteronuclear dimers irreversibly deposited on square lattices
title_full Percolation of heteronuclear dimers irreversibly deposited on square lattices
title_fullStr Percolation of heteronuclear dimers irreversibly deposited on square lattices
title_full_unstemmed Percolation of heteronuclear dimers irreversibly deposited on square lattices
title_sort Percolation of heteronuclear dimers irreversibly deposited on square lattices
dc.creator.none.fl_str_mv Gimenez, Maria Cecilia
Ramirez Pastor, Antonio Jose
author Gimenez, Maria Cecilia
author_facet Gimenez, Maria Cecilia
Ramirez Pastor, Antonio Jose
author_role author
author2 Ramirez Pastor, Antonio Jose
author2_role author
dc.subject.none.fl_str_mv Percolation
Numerical Simulations
Dimers
topic Percolation
Numerical Simulations
Dimers
purl_subject.fl_str_mv https://purl.org/becyt/ford/1.3
https://purl.org/becyt/ford/1
dc.description.none.fl_txt_mv The percolation problem of irreversibly deposited heteronuclear dimers on square lattices is studied. A dimer is composed of two segments, and it occupies two adjacent adsorption sites. Each segment can be either a conductive segment (segment type A) or a nonconductive segment (segment type B). Three types of dimers are considered: AA, BB, and AB. The connectivity analysis is carried out by accounting only for the conductive segments (segments type A). The model offers a simplified representation of the problem of percolation of defective (nonideal) particles, where the presence of defects in the system is simulated by introducing a mixture of conductive and nonconductive segments. Different cases were investigated, according to the sequence of deposition of the particles, the types of dimers involved in the process, and the degree of alignment of the deposited objects. By means of numerical simulations and finite-size scaling analysis, the complete phase diagram separating a percolating from a nonpercolating region was determined for each case. Finally, the consistency of our results was examined by comparing with previous data in the literature for linear k-mers (particles occupying k adjacent sites) with defects.
Fil: Gimenez, Maria Cecilia. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Instituto de Física Enrique Gaviola. Universidad Nacional de Córdoba. Instituto de Física Enrique Gaviola; Argentina
Fil: Ramirez Pastor, Antonio Jose. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - San Luis. Instituto de Física Aplicada "Dr. Jorge Andrés Zgrablich". Universidad Nacional de San Luis. Facultad de Ciencias Físico Matemáticas y Naturales. Instituto de Física Aplicada "Dr. Jorge Andrés Zgrablich"; Argentina
description The percolation problem of irreversibly deposited heteronuclear dimers on square lattices is studied. A dimer is composed of two segments, and it occupies two adjacent adsorption sites. Each segment can be either a conductive segment (segment type A) or a nonconductive segment (segment type B). Three types of dimers are considered: AA, BB, and AB. The connectivity analysis is carried out by accounting only for the conductive segments (segments type A). The model offers a simplified representation of the problem of percolation of defective (nonideal) particles, where the presence of defects in the system is simulated by introducing a mixture of conductive and nonconductive segments. Different cases were investigated, according to the sequence of deposition of the particles, the types of dimers involved in the process, and the degree of alignment of the deposited objects. By means of numerical simulations and finite-size scaling analysis, the complete phase diagram separating a percolating from a nonpercolating region was determined for each case. Finally, the consistency of our results was examined by comparing with previous data in the literature for linear k-mers (particles occupying k adjacent sites) with defects.
publishDate 2016
dc.date.none.fl_str_mv 2016-09
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/60593
Gimenez, Maria Cecilia; Ramirez Pastor, Antonio Jose; Percolation of heteronuclear dimers irreversibly deposited on square lattices; American Physical Society; Physical Review E; 94; 3; 9-2016; 1-6; 032129
2470-0053
CONICET Digital
CONICET
url http://hdl.handle.net/11336/60593
identifier_str_mv Gimenez, Maria Cecilia; Ramirez Pastor, Antonio Jose; Percolation of heteronuclear dimers irreversibly deposited on square lattices; American Physical Society; Physical Review E; 94; 3; 9-2016; 1-6; 032129
2470-0053
CONICET Digital
CONICET
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/doi/10.1103/PhysRevE.94.032129
info:eu-repo/semantics/altIdentifier/url/https://journals.aps.org/pre/abstract/10.1103/PhysRevE.94.032129
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
dc.publisher.none.fl_str_mv American Physical Society
publisher.none.fl_str_mv American Physical Society
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1842269900636160000
score 13.13397