Multi-gene metabolic engineering of tomato plants results in increased fruit yield up to 23%
- Autores
- Vallarino, José G.; Kubiszewski Jakubiak, Szymon; Ruf, Stephanie; Rößner, Margit; Timm, Stefan; Bauwe, Hermann; Carrari, Fernando Oscar; Rentsch, Doris; Bock, Ralph; Sweetlove, Lee J.; Fernie, Alisdair R.
- Año de publicación
- 2020
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- The capacity to assimilate carbon and nitrogen, to transport the resultant sugars and amino acids to sink tissues, and to convert the incoming sugars and amino acids into storage compounds in the sink tissues, are key determinants of crop yield. Given that all of these processes have the potential to co-limit growth, multiple genetic interventions in source and sink tissues, plus transport processes may be necessary to reach the full yield potential of a crop. We used biolistic combinatorial co-transformation (up to 20 transgenes) for increasing C and N flows with the purpose of increasing tomato fruit yield. We observed an increased fruit yield of up to 23%. To better explore the reconfiguration of metabolic networks in these transformants, we generated a dataset encompassing physiological parameters, gene expression and metabolite profiling on plants grown under glasshouse or polytunnel conditions. A Sparse Partial Least Squares regression model was able to explain the combination of genes that contributed to increased fruit yield. This combinatorial study of multiple transgenes targeting primary metabolism thus offers opportunities to probe the genetic basis of metabolic and phenotypic variation, providing insight into the difficulties in choosing the correct combination of targets for engineering increased fruit yield.
Fil: Vallarino, José G.. Institut Max Planck fur Molekulare Physiologie; Alemania
Fil: Kubiszewski Jakubiak, Szymon. Institut Max Planck fur Molekulare Physiologie; Alemania
Fil: Ruf, Stephanie. Institut Max Planck fur Molekulare Physiologie; Alemania
Fil: Rößner, Margit. Institut Max Planck fur Molekulare Physiologie; Alemania
Fil: Timm, Stefan. Universität Rostock; Alemania
Fil: Bauwe, Hermann. Universität Rostock; Alemania
Fil: Carrari, Fernando Oscar. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Fisiología, Biología Molecular y Neurociencias. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Fisiología, Biología Molecular y Neurociencias; Argentina
Fil: Rentsch, Doris. University of Bern; Suiza
Fil: Bock, Ralph. Institut Max Planck fur Molekulare Physiologie; Alemania
Fil: Sweetlove, Lee J.. University of Oxford; Reino Unido
Fil: Fernie, Alisdair R.. Institut Max Planck fur Molekulare Physiologie; Alemania - Materia
-
Multi‑gene
Metabolic engineering
Tomato plants - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/142320
Ver los metadatos del registro completo
id |
CONICETDig_848a8b60cf5116d40bc7f2a4ed9d9f79 |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/142320 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Multi-gene metabolic engineering of tomato plants results in increased fruit yield up to 23%Vallarino, José G.Kubiszewski Jakubiak, SzymonRuf, StephanieRößner, MargitTimm, StefanBauwe, HermannCarrari, Fernando OscarRentsch, DorisBock, RalphSweetlove, Lee J.Fernie, Alisdair R.Multi‑geneMetabolic engineeringTomato plantshttps://purl.org/becyt/ford/1.6https://purl.org/becyt/ford/1The capacity to assimilate carbon and nitrogen, to transport the resultant sugars and amino acids to sink tissues, and to convert the incoming sugars and amino acids into storage compounds in the sink tissues, are key determinants of crop yield. Given that all of these processes have the potential to co-limit growth, multiple genetic interventions in source and sink tissues, plus transport processes may be necessary to reach the full yield potential of a crop. We used biolistic combinatorial co-transformation (up to 20 transgenes) for increasing C and N flows with the purpose of increasing tomato fruit yield. We observed an increased fruit yield of up to 23%. To better explore the reconfiguration of metabolic networks in these transformants, we generated a dataset encompassing physiological parameters, gene expression and metabolite profiling on plants grown under glasshouse or polytunnel conditions. A Sparse Partial Least Squares regression model was able to explain the combination of genes that contributed to increased fruit yield. This combinatorial study of multiple transgenes targeting primary metabolism thus offers opportunities to probe the genetic basis of metabolic and phenotypic variation, providing insight into the difficulties in choosing the correct combination of targets for engineering increased fruit yield.Fil: Vallarino, José G.. Institut Max Planck fur Molekulare Physiologie; AlemaniaFil: Kubiszewski Jakubiak, Szymon. Institut Max Planck fur Molekulare Physiologie; AlemaniaFil: Ruf, Stephanie. Institut Max Planck fur Molekulare Physiologie; AlemaniaFil: Rößner, Margit. Institut Max Planck fur Molekulare Physiologie; AlemaniaFil: Timm, Stefan. Universität Rostock; AlemaniaFil: Bauwe, Hermann. Universität Rostock; AlemaniaFil: Carrari, Fernando Oscar. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Fisiología, Biología Molecular y Neurociencias. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Fisiología, Biología Molecular y Neurociencias; ArgentinaFil: Rentsch, Doris. University of Bern; SuizaFil: Bock, Ralph. Institut Max Planck fur Molekulare Physiologie; AlemaniaFil: Sweetlove, Lee J.. University of Oxford; Reino UnidoFil: Fernie, Alisdair R.. Institut Max Planck fur Molekulare Physiologie; AlemaniaNature Research2020-12info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/142320Vallarino, José G.; Kubiszewski Jakubiak, Szymon; Ruf, Stephanie; Rößner, Margit; Timm, Stefan; et al.; Multi-gene metabolic engineering of tomato plants results in increased fruit yield up to 23%; Nature Research; Scientific Reports; 10; 1; 12-2020; 1-182045-2322CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/doi/10.1038/s41598-020-73709-6info:eu-repo/semantics/altIdentifier/url/https://www.nature.com/articles/s41598-020-73709-6info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T10:16:42Zoai:ri.conicet.gov.ar:11336/142320instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 10:16:43.268CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Multi-gene metabolic engineering of tomato plants results in increased fruit yield up to 23% |
title |
Multi-gene metabolic engineering of tomato plants results in increased fruit yield up to 23% |
spellingShingle |
Multi-gene metabolic engineering of tomato plants results in increased fruit yield up to 23% Vallarino, José G. Multi‑gene Metabolic engineering Tomato plants |
title_short |
Multi-gene metabolic engineering of tomato plants results in increased fruit yield up to 23% |
title_full |
Multi-gene metabolic engineering of tomato plants results in increased fruit yield up to 23% |
title_fullStr |
Multi-gene metabolic engineering of tomato plants results in increased fruit yield up to 23% |
title_full_unstemmed |
Multi-gene metabolic engineering of tomato plants results in increased fruit yield up to 23% |
title_sort |
Multi-gene metabolic engineering of tomato plants results in increased fruit yield up to 23% |
dc.creator.none.fl_str_mv |
Vallarino, José G. Kubiszewski Jakubiak, Szymon Ruf, Stephanie Rößner, Margit Timm, Stefan Bauwe, Hermann Carrari, Fernando Oscar Rentsch, Doris Bock, Ralph Sweetlove, Lee J. Fernie, Alisdair R. |
author |
Vallarino, José G. |
author_facet |
Vallarino, José G. Kubiszewski Jakubiak, Szymon Ruf, Stephanie Rößner, Margit Timm, Stefan Bauwe, Hermann Carrari, Fernando Oscar Rentsch, Doris Bock, Ralph Sweetlove, Lee J. Fernie, Alisdair R. |
author_role |
author |
author2 |
Kubiszewski Jakubiak, Szymon Ruf, Stephanie Rößner, Margit Timm, Stefan Bauwe, Hermann Carrari, Fernando Oscar Rentsch, Doris Bock, Ralph Sweetlove, Lee J. Fernie, Alisdair R. |
author2_role |
author author author author author author author author author author |
dc.subject.none.fl_str_mv |
Multi‑gene Metabolic engineering Tomato plants |
topic |
Multi‑gene Metabolic engineering Tomato plants |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.6 https://purl.org/becyt/ford/1 |
dc.description.none.fl_txt_mv |
The capacity to assimilate carbon and nitrogen, to transport the resultant sugars and amino acids to sink tissues, and to convert the incoming sugars and amino acids into storage compounds in the sink tissues, are key determinants of crop yield. Given that all of these processes have the potential to co-limit growth, multiple genetic interventions in source and sink tissues, plus transport processes may be necessary to reach the full yield potential of a crop. We used biolistic combinatorial co-transformation (up to 20 transgenes) for increasing C and N flows with the purpose of increasing tomato fruit yield. We observed an increased fruit yield of up to 23%. To better explore the reconfiguration of metabolic networks in these transformants, we generated a dataset encompassing physiological parameters, gene expression and metabolite profiling on plants grown under glasshouse or polytunnel conditions. A Sparse Partial Least Squares regression model was able to explain the combination of genes that contributed to increased fruit yield. This combinatorial study of multiple transgenes targeting primary metabolism thus offers opportunities to probe the genetic basis of metabolic and phenotypic variation, providing insight into the difficulties in choosing the correct combination of targets for engineering increased fruit yield. Fil: Vallarino, José G.. Institut Max Planck fur Molekulare Physiologie; Alemania Fil: Kubiszewski Jakubiak, Szymon. Institut Max Planck fur Molekulare Physiologie; Alemania Fil: Ruf, Stephanie. Institut Max Planck fur Molekulare Physiologie; Alemania Fil: Rößner, Margit. Institut Max Planck fur Molekulare Physiologie; Alemania Fil: Timm, Stefan. Universität Rostock; Alemania Fil: Bauwe, Hermann. Universität Rostock; Alemania Fil: Carrari, Fernando Oscar. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Fisiología, Biología Molecular y Neurociencias. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Fisiología, Biología Molecular y Neurociencias; Argentina Fil: Rentsch, Doris. University of Bern; Suiza Fil: Bock, Ralph. Institut Max Planck fur Molekulare Physiologie; Alemania Fil: Sweetlove, Lee J.. University of Oxford; Reino Unido Fil: Fernie, Alisdair R.. Institut Max Planck fur Molekulare Physiologie; Alemania |
description |
The capacity to assimilate carbon and nitrogen, to transport the resultant sugars and amino acids to sink tissues, and to convert the incoming sugars and amino acids into storage compounds in the sink tissues, are key determinants of crop yield. Given that all of these processes have the potential to co-limit growth, multiple genetic interventions in source and sink tissues, plus transport processes may be necessary to reach the full yield potential of a crop. We used biolistic combinatorial co-transformation (up to 20 transgenes) for increasing C and N flows with the purpose of increasing tomato fruit yield. We observed an increased fruit yield of up to 23%. To better explore the reconfiguration of metabolic networks in these transformants, we generated a dataset encompassing physiological parameters, gene expression and metabolite profiling on plants grown under glasshouse or polytunnel conditions. A Sparse Partial Least Squares regression model was able to explain the combination of genes that contributed to increased fruit yield. This combinatorial study of multiple transgenes targeting primary metabolism thus offers opportunities to probe the genetic basis of metabolic and phenotypic variation, providing insight into the difficulties in choosing the correct combination of targets for engineering increased fruit yield. |
publishDate |
2020 |
dc.date.none.fl_str_mv |
2020-12 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/142320 Vallarino, José G.; Kubiszewski Jakubiak, Szymon; Ruf, Stephanie; Rößner, Margit; Timm, Stefan; et al.; Multi-gene metabolic engineering of tomato plants results in increased fruit yield up to 23%; Nature Research; Scientific Reports; 10; 1; 12-2020; 1-18 2045-2322 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/142320 |
identifier_str_mv |
Vallarino, José G.; Kubiszewski Jakubiak, Szymon; Ruf, Stephanie; Rößner, Margit; Timm, Stefan; et al.; Multi-gene metabolic engineering of tomato plants results in increased fruit yield up to 23%; Nature Research; Scientific Reports; 10; 1; 12-2020; 1-18 2045-2322 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/doi/10.1038/s41598-020-73709-6 info:eu-repo/semantics/altIdentifier/url/https://www.nature.com/articles/s41598-020-73709-6 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
Nature Research |
publisher.none.fl_str_mv |
Nature Research |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1844614114526101504 |
score |
13.070432 |