Multiresolution schemes for time-scaled propagation of wave packets

Autores
Frapiccini, Ana Laura; Hamido, Aliou; Mota-Furtado, Francisca; O’Mahony, Patrick F.; Piraux, Bernard
Año de publicación
2015
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
We present a detailed analysis of the time-scaled coordinate approach and its implementation for solving the time-dependent Schrödinger equation describing the interaction of atoms or molecules with radiation pulses. We investigate and discuss the performance of multiresolution schemes for the treatment of the squeezing around the origin of the bound part of the scaled wave packet. When the wave packet is expressed in terms of B splines, we consider two different types of breakpoint sequences: an exponential sequence with a constant density and an initially uniform sequence with a density of points around the origin that increases with time. These two multiresolution schemes are tested in the case of a one-dimensional Gaussian potential and for atomic hydrogen. In the latter case, we also use Sturmian functions to describe the scaled wave packet and discuss a multiresolution scheme which consists of working in a Sturmian basis characterized by a set of nonlinear parameters. Regarding the continuum part of the scaled wave packet, we show explicitly that, for large times, the group velocity of each ionized wave packet goes to zero while its dispersion is suppressed, thereby explaining why, eventually, the scaled wave packet associated with the ejected electrons becomes stationary. Finally, we show that only the lowest scaled bound states can be removed from the total scaled wave packet once the interaction with the pulse has ceased.
Fil: Frapiccini, Ana Laura. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Instituto de Física del Sur. Universidad Nacional del Sur. Departamento de Física. Instituto de Física del Sur; Argentina. Université Catholique de Louvain; Bélgica
Fil: Hamido, Aliou. Université Catholique de Louvain; Bélgica
Fil: Mota-Furtado, Francisca. University of London; Reino Unido
Fil: O’Mahony, Patrick F.. University of London; Reino Unido
Fil: Piraux, Bernard. Université Catholique de Louvain; Bélgica
Materia
TIME DEPENDENT
SCALING METHOD
MULTIRESOLUTION
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/85825

id CONICETDig_84615274abb2f9a3427e7911bc96aa33
oai_identifier_str oai:ri.conicet.gov.ar:11336/85825
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling Multiresolution schemes for time-scaled propagation of wave packetsFrapiccini, Ana LauraHamido, AliouMota-Furtado, FranciscaO’Mahony, Patrick F.Piraux, BernardTIME DEPENDENTSCALING METHODMULTIRESOLUTIONhttps://purl.org/becyt/ford/1.3https://purl.org/becyt/ford/1We present a detailed analysis of the time-scaled coordinate approach and its implementation for solving the time-dependent Schrödinger equation describing the interaction of atoms or molecules with radiation pulses. We investigate and discuss the performance of multiresolution schemes for the treatment of the squeezing around the origin of the bound part of the scaled wave packet. When the wave packet is expressed in terms of B splines, we consider two different types of breakpoint sequences: an exponential sequence with a constant density and an initially uniform sequence with a density of points around the origin that increases with time. These two multiresolution schemes are tested in the case of a one-dimensional Gaussian potential and for atomic hydrogen. In the latter case, we also use Sturmian functions to describe the scaled wave packet and discuss a multiresolution scheme which consists of working in a Sturmian basis characterized by a set of nonlinear parameters. Regarding the continuum part of the scaled wave packet, we show explicitly that, for large times, the group velocity of each ionized wave packet goes to zero while its dispersion is suppressed, thereby explaining why, eventually, the scaled wave packet associated with the ejected electrons becomes stationary. Finally, we show that only the lowest scaled bound states can be removed from the total scaled wave packet once the interaction with the pulse has ceased.Fil: Frapiccini, Ana Laura. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Instituto de Física del Sur. Universidad Nacional del Sur. Departamento de Física. Instituto de Física del Sur; Argentina. Université Catholique de Louvain; BélgicaFil: Hamido, Aliou. Université Catholique de Louvain; BélgicaFil: Mota-Furtado, Francisca. University of London; Reino UnidoFil: O’Mahony, Patrick F.. University of London; Reino UnidoFil: Piraux, Bernard. Université Catholique de Louvain; BélgicaAmerican Physical Society2015-04info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/85825Frapiccini, Ana Laura; Hamido, Aliou; Mota-Furtado, Francisca; O’Mahony, Patrick F.; Piraux, Bernard; Multiresolution schemes for time-scaled propagation of wave packets; American Physical Society; Physical Review A: Atomic, Molecular and Optical Physics; 91; 4; 4-2015; 1-101050-29471094-1622CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/https://journals.aps.org/pra/abstract/10.1103/PhysRevA.91.043423info:eu-repo/semantics/altIdentifier/doi/10.1103/PhysRevA.91.043423info:eu-repo/semantics/altIdentifier/url/https://arxiv.org/abs/1412.7982info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T10:13:48Zoai:ri.conicet.gov.ar:11336/85825instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 10:13:48.505CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv Multiresolution schemes for time-scaled propagation of wave packets
title Multiresolution schemes for time-scaled propagation of wave packets
spellingShingle Multiresolution schemes for time-scaled propagation of wave packets
Frapiccini, Ana Laura
TIME DEPENDENT
SCALING METHOD
MULTIRESOLUTION
title_short Multiresolution schemes for time-scaled propagation of wave packets
title_full Multiresolution schemes for time-scaled propagation of wave packets
title_fullStr Multiresolution schemes for time-scaled propagation of wave packets
title_full_unstemmed Multiresolution schemes for time-scaled propagation of wave packets
title_sort Multiresolution schemes for time-scaled propagation of wave packets
dc.creator.none.fl_str_mv Frapiccini, Ana Laura
Hamido, Aliou
Mota-Furtado, Francisca
O’Mahony, Patrick F.
Piraux, Bernard
author Frapiccini, Ana Laura
author_facet Frapiccini, Ana Laura
Hamido, Aliou
Mota-Furtado, Francisca
O’Mahony, Patrick F.
Piraux, Bernard
author_role author
author2 Hamido, Aliou
Mota-Furtado, Francisca
O’Mahony, Patrick F.
Piraux, Bernard
author2_role author
author
author
author
dc.subject.none.fl_str_mv TIME DEPENDENT
SCALING METHOD
MULTIRESOLUTION
topic TIME DEPENDENT
SCALING METHOD
MULTIRESOLUTION
purl_subject.fl_str_mv https://purl.org/becyt/ford/1.3
https://purl.org/becyt/ford/1
dc.description.none.fl_txt_mv We present a detailed analysis of the time-scaled coordinate approach and its implementation for solving the time-dependent Schrödinger equation describing the interaction of atoms or molecules with radiation pulses. We investigate and discuss the performance of multiresolution schemes for the treatment of the squeezing around the origin of the bound part of the scaled wave packet. When the wave packet is expressed in terms of B splines, we consider two different types of breakpoint sequences: an exponential sequence with a constant density and an initially uniform sequence with a density of points around the origin that increases with time. These two multiresolution schemes are tested in the case of a one-dimensional Gaussian potential and for atomic hydrogen. In the latter case, we also use Sturmian functions to describe the scaled wave packet and discuss a multiresolution scheme which consists of working in a Sturmian basis characterized by a set of nonlinear parameters. Regarding the continuum part of the scaled wave packet, we show explicitly that, for large times, the group velocity of each ionized wave packet goes to zero while its dispersion is suppressed, thereby explaining why, eventually, the scaled wave packet associated with the ejected electrons becomes stationary. Finally, we show that only the lowest scaled bound states can be removed from the total scaled wave packet once the interaction with the pulse has ceased.
Fil: Frapiccini, Ana Laura. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Instituto de Física del Sur. Universidad Nacional del Sur. Departamento de Física. Instituto de Física del Sur; Argentina. Université Catholique de Louvain; Bélgica
Fil: Hamido, Aliou. Université Catholique de Louvain; Bélgica
Fil: Mota-Furtado, Francisca. University of London; Reino Unido
Fil: O’Mahony, Patrick F.. University of London; Reino Unido
Fil: Piraux, Bernard. Université Catholique de Louvain; Bélgica
description We present a detailed analysis of the time-scaled coordinate approach and its implementation for solving the time-dependent Schrödinger equation describing the interaction of atoms or molecules with radiation pulses. We investigate and discuss the performance of multiresolution schemes for the treatment of the squeezing around the origin of the bound part of the scaled wave packet. When the wave packet is expressed in terms of B splines, we consider two different types of breakpoint sequences: an exponential sequence with a constant density and an initially uniform sequence with a density of points around the origin that increases with time. These two multiresolution schemes are tested in the case of a one-dimensional Gaussian potential and for atomic hydrogen. In the latter case, we also use Sturmian functions to describe the scaled wave packet and discuss a multiresolution scheme which consists of working in a Sturmian basis characterized by a set of nonlinear parameters. Regarding the continuum part of the scaled wave packet, we show explicitly that, for large times, the group velocity of each ionized wave packet goes to zero while its dispersion is suppressed, thereby explaining why, eventually, the scaled wave packet associated with the ejected electrons becomes stationary. Finally, we show that only the lowest scaled bound states can be removed from the total scaled wave packet once the interaction with the pulse has ceased.
publishDate 2015
dc.date.none.fl_str_mv 2015-04
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/85825
Frapiccini, Ana Laura; Hamido, Aliou; Mota-Furtado, Francisca; O’Mahony, Patrick F.; Piraux, Bernard; Multiresolution schemes for time-scaled propagation of wave packets; American Physical Society; Physical Review A: Atomic, Molecular and Optical Physics; 91; 4; 4-2015; 1-10
1050-2947
1094-1622
CONICET Digital
CONICET
url http://hdl.handle.net/11336/85825
identifier_str_mv Frapiccini, Ana Laura; Hamido, Aliou; Mota-Furtado, Francisca; O’Mahony, Patrick F.; Piraux, Bernard; Multiresolution schemes for time-scaled propagation of wave packets; American Physical Society; Physical Review A: Atomic, Molecular and Optical Physics; 91; 4; 4-2015; 1-10
1050-2947
1094-1622
CONICET Digital
CONICET
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/url/https://journals.aps.org/pra/abstract/10.1103/PhysRevA.91.043423
info:eu-repo/semantics/altIdentifier/doi/10.1103/PhysRevA.91.043423
info:eu-repo/semantics/altIdentifier/url/https://arxiv.org/abs/1412.7982
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
application/pdf
dc.publisher.none.fl_str_mv American Physical Society
publisher.none.fl_str_mv American Physical Society
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1844614059185405952
score 13.070432