Target identification for repurposed drugs active against SARS-CoV-2 via high-throughput inverse docking
- Autores
- Ribone, Sergio Roman; Paz, Sergio Alexis; Abrams, Cameron F.; Villarreal, Marcos Ariel
- Año de publicación
- 2021
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- Screening already approved drugs for activity against a novel pathogen can be an important part of global rapid-response strategies in pandemics. Such high-throughput repurposing screens have already identifed several existing drugs with potential to combat SARS-CoV-2. However, moving these hits forward for possible development into drugs specifcally against this pathogen requires unambiguous identifcation of their corresponding targets, something the high-throughput screens are not typically designed to reveal. We present here a new computational inverse-docking protocol that uses all-atom protein structures and a combination of docking methods to rank-order targets for each of several existing drugs for which a plurality of recent high-throughput screens detected anti-SARS-CoV-2 activity. We demonstrate validation of this method with known drug-target pairs, including both non-antiviral and antiviral compounds. We subjected 152 distinct drugs potentially suitable for repurposing to the inverse docking procedure. The most common preferential targets were the human enzymes TMPRSS2 and PIKfyve, followed by the viral enzymes Helicase and PLpro. All compounds that selected TMPRSS2 are known serine protease inhibitors, and those that selected PIKfyve are known tyrosine kinase inhibitors. Detailed structural analysis of the docking poses revealed important insights into why these selections arose, and could potentially lead to more rational design of new drugs against these targets.
Fil: Ribone, Sergio Roman. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Unidad de Investigación y Desarrollo en Tecnología Farmacéutica. Universidad Nacional de Córdoba. Facultad de Ciencias Químicas. Unidad de Investigación y Desarrollo en Tecnología Farmacéutica; Argentina
Fil: Paz, Sergio Alexis. Universidad Nacional de Córdoba. Facultad de Ciencias Químicas. Departamento de Química Teórica y Computacional; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Instituto de Investigaciones en Físico-química de Córdoba. Universidad Nacional de Córdoba. Facultad de Ciencias Químicas. Instituto de Investigaciones en Físico-química de Córdoba; Argentina
Fil: Abrams, Cameron F.. Drexel University; Estados Unidos
Fil: Villarreal, Marcos Ariel. Universidad Nacional de Córdoba. Facultad de Ciencias Químicas. Departamento de Química Teórica y Computacional; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Instituto de Investigaciones en Físico-química de Córdoba. Universidad Nacional de Córdoba. Facultad de Ciencias Químicas. Instituto de Investigaciones en Físico-química de Córdoba; Argentina - Materia
-
SARS-COV-2
INVERSE DOCKING
HIGH-THROUGHPUT
REPURPOSING
TMPRSS2
PIKfyve
COVID-19 - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/149938
Ver los metadatos del registro completo
id |
CONICETDig_83f1fca381c8e4d3d73dd232771a7d1f |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/149938 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Target identification for repurposed drugs active against SARS-CoV-2 via high-throughput inverse dockingRibone, Sergio RomanPaz, Sergio AlexisAbrams, Cameron F.Villarreal, Marcos ArielSARS-COV-2INVERSE DOCKINGHIGH-THROUGHPUTREPURPOSINGTMPRSS2PIKfyveCOVID-19https://purl.org/becyt/ford/1.4https://purl.org/becyt/ford/1Screening already approved drugs for activity against a novel pathogen can be an important part of global rapid-response strategies in pandemics. Such high-throughput repurposing screens have already identifed several existing drugs with potential to combat SARS-CoV-2. However, moving these hits forward for possible development into drugs specifcally against this pathogen requires unambiguous identifcation of their corresponding targets, something the high-throughput screens are not typically designed to reveal. We present here a new computational inverse-docking protocol that uses all-atom protein structures and a combination of docking methods to rank-order targets for each of several existing drugs for which a plurality of recent high-throughput screens detected anti-SARS-CoV-2 activity. We demonstrate validation of this method with known drug-target pairs, including both non-antiviral and antiviral compounds. We subjected 152 distinct drugs potentially suitable for repurposing to the inverse docking procedure. The most common preferential targets were the human enzymes TMPRSS2 and PIKfyve, followed by the viral enzymes Helicase and PLpro. All compounds that selected TMPRSS2 are known serine protease inhibitors, and those that selected PIKfyve are known tyrosine kinase inhibitors. Detailed structural analysis of the docking poses revealed important insights into why these selections arose, and could potentially lead to more rational design of new drugs against these targets.Fil: Ribone, Sergio Roman. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Unidad de Investigación y Desarrollo en Tecnología Farmacéutica. Universidad Nacional de Córdoba. Facultad de Ciencias Químicas. Unidad de Investigación y Desarrollo en Tecnología Farmacéutica; ArgentinaFil: Paz, Sergio Alexis. Universidad Nacional de Córdoba. Facultad de Ciencias Químicas. Departamento de Química Teórica y Computacional; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Instituto de Investigaciones en Físico-química de Córdoba. Universidad Nacional de Córdoba. Facultad de Ciencias Químicas. Instituto de Investigaciones en Físico-química de Córdoba; ArgentinaFil: Abrams, Cameron F.. Drexel University; Estados UnidosFil: Villarreal, Marcos Ariel. Universidad Nacional de Córdoba. Facultad de Ciencias Químicas. Departamento de Química Teórica y Computacional; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Instituto de Investigaciones en Físico-química de Córdoba. Universidad Nacional de Córdoba. Facultad de Ciencias Químicas. Instituto de Investigaciones en Físico-química de Córdoba; ArgentinaSpringer2021-11info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/149938Ribone, Sergio Roman; Paz, Sergio Alexis; Abrams, Cameron F.; Villarreal, Marcos Ariel; Target identification for repurposed drugs active against SARS-CoV-2 via high-throughput inverse docking; Springer; Journal of Computer-Aided Molecular Design; 2021; 11-2021; 1-130920-654XCONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/https://link.springer.com/10.1007/s10822-021-00432-3info:eu-repo/semantics/altIdentifier/doi/10.1007/s10822-021-00432-3info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-10-15T14:27:07Zoai:ri.conicet.gov.ar:11336/149938instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-10-15 14:27:08.225CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Target identification for repurposed drugs active against SARS-CoV-2 via high-throughput inverse docking |
title |
Target identification for repurposed drugs active against SARS-CoV-2 via high-throughput inverse docking |
spellingShingle |
Target identification for repurposed drugs active against SARS-CoV-2 via high-throughput inverse docking Ribone, Sergio Roman SARS-COV-2 INVERSE DOCKING HIGH-THROUGHPUT REPURPOSING TMPRSS2 PIKfyve COVID-19 |
title_short |
Target identification for repurposed drugs active against SARS-CoV-2 via high-throughput inverse docking |
title_full |
Target identification for repurposed drugs active against SARS-CoV-2 via high-throughput inverse docking |
title_fullStr |
Target identification for repurposed drugs active against SARS-CoV-2 via high-throughput inverse docking |
title_full_unstemmed |
Target identification for repurposed drugs active against SARS-CoV-2 via high-throughput inverse docking |
title_sort |
Target identification for repurposed drugs active against SARS-CoV-2 via high-throughput inverse docking |
dc.creator.none.fl_str_mv |
Ribone, Sergio Roman Paz, Sergio Alexis Abrams, Cameron F. Villarreal, Marcos Ariel |
author |
Ribone, Sergio Roman |
author_facet |
Ribone, Sergio Roman Paz, Sergio Alexis Abrams, Cameron F. Villarreal, Marcos Ariel |
author_role |
author |
author2 |
Paz, Sergio Alexis Abrams, Cameron F. Villarreal, Marcos Ariel |
author2_role |
author author author |
dc.subject.none.fl_str_mv |
SARS-COV-2 INVERSE DOCKING HIGH-THROUGHPUT REPURPOSING TMPRSS2 PIKfyve COVID-19 |
topic |
SARS-COV-2 INVERSE DOCKING HIGH-THROUGHPUT REPURPOSING TMPRSS2 PIKfyve COVID-19 |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.4 https://purl.org/becyt/ford/1 |
dc.description.none.fl_txt_mv |
Screening already approved drugs for activity against a novel pathogen can be an important part of global rapid-response strategies in pandemics. Such high-throughput repurposing screens have already identifed several existing drugs with potential to combat SARS-CoV-2. However, moving these hits forward for possible development into drugs specifcally against this pathogen requires unambiguous identifcation of their corresponding targets, something the high-throughput screens are not typically designed to reveal. We present here a new computational inverse-docking protocol that uses all-atom protein structures and a combination of docking methods to rank-order targets for each of several existing drugs for which a plurality of recent high-throughput screens detected anti-SARS-CoV-2 activity. We demonstrate validation of this method with known drug-target pairs, including both non-antiviral and antiviral compounds. We subjected 152 distinct drugs potentially suitable for repurposing to the inverse docking procedure. The most common preferential targets were the human enzymes TMPRSS2 and PIKfyve, followed by the viral enzymes Helicase and PLpro. All compounds that selected TMPRSS2 are known serine protease inhibitors, and those that selected PIKfyve are known tyrosine kinase inhibitors. Detailed structural analysis of the docking poses revealed important insights into why these selections arose, and could potentially lead to more rational design of new drugs against these targets. Fil: Ribone, Sergio Roman. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Unidad de Investigación y Desarrollo en Tecnología Farmacéutica. Universidad Nacional de Córdoba. Facultad de Ciencias Químicas. Unidad de Investigación y Desarrollo en Tecnología Farmacéutica; Argentina Fil: Paz, Sergio Alexis. Universidad Nacional de Córdoba. Facultad de Ciencias Químicas. Departamento de Química Teórica y Computacional; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Instituto de Investigaciones en Físico-química de Córdoba. Universidad Nacional de Córdoba. Facultad de Ciencias Químicas. Instituto de Investigaciones en Físico-química de Córdoba; Argentina Fil: Abrams, Cameron F.. Drexel University; Estados Unidos Fil: Villarreal, Marcos Ariel. Universidad Nacional de Córdoba. Facultad de Ciencias Químicas. Departamento de Química Teórica y Computacional; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Instituto de Investigaciones en Físico-química de Córdoba. Universidad Nacional de Córdoba. Facultad de Ciencias Químicas. Instituto de Investigaciones en Físico-química de Córdoba; Argentina |
description |
Screening already approved drugs for activity against a novel pathogen can be an important part of global rapid-response strategies in pandemics. Such high-throughput repurposing screens have already identifed several existing drugs with potential to combat SARS-CoV-2. However, moving these hits forward for possible development into drugs specifcally against this pathogen requires unambiguous identifcation of their corresponding targets, something the high-throughput screens are not typically designed to reveal. We present here a new computational inverse-docking protocol that uses all-atom protein structures and a combination of docking methods to rank-order targets for each of several existing drugs for which a plurality of recent high-throughput screens detected anti-SARS-CoV-2 activity. We demonstrate validation of this method with known drug-target pairs, including both non-antiviral and antiviral compounds. We subjected 152 distinct drugs potentially suitable for repurposing to the inverse docking procedure. The most common preferential targets were the human enzymes TMPRSS2 and PIKfyve, followed by the viral enzymes Helicase and PLpro. All compounds that selected TMPRSS2 are known serine protease inhibitors, and those that selected PIKfyve are known tyrosine kinase inhibitors. Detailed structural analysis of the docking poses revealed important insights into why these selections arose, and could potentially lead to more rational design of new drugs against these targets. |
publishDate |
2021 |
dc.date.none.fl_str_mv |
2021-11 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/149938 Ribone, Sergio Roman; Paz, Sergio Alexis; Abrams, Cameron F.; Villarreal, Marcos Ariel; Target identification for repurposed drugs active against SARS-CoV-2 via high-throughput inverse docking; Springer; Journal of Computer-Aided Molecular Design; 2021; 11-2021; 1-13 0920-654X CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/149938 |
identifier_str_mv |
Ribone, Sergio Roman; Paz, Sergio Alexis; Abrams, Cameron F.; Villarreal, Marcos Ariel; Target identification for repurposed drugs active against SARS-CoV-2 via high-throughput inverse docking; Springer; Journal of Computer-Aided Molecular Design; 2021; 11-2021; 1-13 0920-654X CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/url/https://link.springer.com/10.1007/s10822-021-00432-3 info:eu-repo/semantics/altIdentifier/doi/10.1007/s10822-021-00432-3 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
Springer |
publisher.none.fl_str_mv |
Springer |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1846082724095328256 |
score |
13.22299 |