A note on the application of wazewski’s topological method to an integro: differential equation of volterra type

Autores
Napoles Valdes, Juan Eduardo; Velázquez, José R.; Lugo, Luciano Miguel; Guzmán, Paulo Matias
Año de publicación
2015
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
The purpose of this note is to generalize the Wazewski’s Topological Method 11, originally stated for ordinary differential equations, to the integro – differential equation of Volterra type (1), under suitable conditions on the functions involved.
Fil: Napoles Valdes, Juan Eduardo. Universidad Nacional del Nordeste. Facultad de Ciencias Exactas y Naturales y Agrimensura. Departamento de Matemática; Argentina
Fil: Velázquez, José R.. Universidad Nacional del Nordeste; Argentina
Fil: Lugo, Luciano Miguel. Universidad Nacional del Nordeste. Facultad de Ciencias Exactas y Naturales y Agrimensura. Departamento de Matemática; Argentina
Fil: Guzmán, Paulo Matias. Universidad Nacional del Nordeste. Facultad de Ciencias Exactas y Naturales y Agrimensura. Departamento de Matemática; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
Materia
BOUNDEDNESS
STABILITY
WAZEWSKI’S
TOPOLOGICAL METHOD
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/39109

id CONICETDig_830b31abe161535753347a6be085bb8b
oai_identifier_str oai:ri.conicet.gov.ar:11336/39109
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling A note on the application of wazewski’s topological method to an integro: differential equation of volterra typeNapoles Valdes, Juan EduardoVelázquez, José R.Lugo, Luciano MiguelGuzmán, Paulo MatiasBOUNDEDNESSSTABILITYWAZEWSKI’STOPOLOGICAL METHODhttps://purl.org/becyt/ford/1.1https://purl.org/becyt/ford/1The purpose of this note is to generalize the Wazewski’s Topological Method 11, originally stated for ordinary differential equations, to the integro – differential equation of Volterra type (1), under suitable conditions on the functions involved.Fil: Napoles Valdes, Juan Eduardo. Universidad Nacional del Nordeste. Facultad de Ciencias Exactas y Naturales y Agrimensura. Departamento de Matemática; ArgentinaFil: Velázquez, José R.. Universidad Nacional del Nordeste; ArgentinaFil: Lugo, Luciano Miguel. Universidad Nacional del Nordeste. Facultad de Ciencias Exactas y Naturales y Agrimensura. Departamento de Matemática; ArgentinaFil: Guzmán, Paulo Matias. Universidad Nacional del Nordeste. Facultad de Ciencias Exactas y Naturales y Agrimensura. Departamento de Matemática; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaScholars Academic and Scientific Publishers2015-11info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/39109Napoles Valdes, Juan Eduardo; Velázquez, José R.; Lugo, Luciano Miguel; Guzmán, Paulo Matias; A note on the application of wazewski’s topological method to an integro: differential equation of volterra type; Scholars Academic and Scientific Publishers; Scholars Journal of Physics, Mathematics and Statistics; 2; 4; 11-2015; 377-3822393-80562393-8064CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/http://saspjournals.com/sjpms-24/info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-10-22T11:30:17Zoai:ri.conicet.gov.ar:11336/39109instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-10-22 11:30:17.619CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv A note on the application of wazewski’s topological method to an integro: differential equation of volterra type
title A note on the application of wazewski’s topological method to an integro: differential equation of volterra type
spellingShingle A note on the application of wazewski’s topological method to an integro: differential equation of volterra type
Napoles Valdes, Juan Eduardo
BOUNDEDNESS
STABILITY
WAZEWSKI’S
TOPOLOGICAL METHOD
title_short A note on the application of wazewski’s topological method to an integro: differential equation of volterra type
title_full A note on the application of wazewski’s topological method to an integro: differential equation of volterra type
title_fullStr A note on the application of wazewski’s topological method to an integro: differential equation of volterra type
title_full_unstemmed A note on the application of wazewski’s topological method to an integro: differential equation of volterra type
title_sort A note on the application of wazewski’s topological method to an integro: differential equation of volterra type
dc.creator.none.fl_str_mv Napoles Valdes, Juan Eduardo
Velázquez, José R.
Lugo, Luciano Miguel
Guzmán, Paulo Matias
author Napoles Valdes, Juan Eduardo
author_facet Napoles Valdes, Juan Eduardo
Velázquez, José R.
Lugo, Luciano Miguel
Guzmán, Paulo Matias
author_role author
author2 Velázquez, José R.
Lugo, Luciano Miguel
Guzmán, Paulo Matias
author2_role author
author
author
dc.subject.none.fl_str_mv BOUNDEDNESS
STABILITY
WAZEWSKI’S
TOPOLOGICAL METHOD
topic BOUNDEDNESS
STABILITY
WAZEWSKI’S
TOPOLOGICAL METHOD
purl_subject.fl_str_mv https://purl.org/becyt/ford/1.1
https://purl.org/becyt/ford/1
dc.description.none.fl_txt_mv The purpose of this note is to generalize the Wazewski’s Topological Method 11, originally stated for ordinary differential equations, to the integro – differential equation of Volterra type (1), under suitable conditions on the functions involved.
Fil: Napoles Valdes, Juan Eduardo. Universidad Nacional del Nordeste. Facultad de Ciencias Exactas y Naturales y Agrimensura. Departamento de Matemática; Argentina
Fil: Velázquez, José R.. Universidad Nacional del Nordeste; Argentina
Fil: Lugo, Luciano Miguel. Universidad Nacional del Nordeste. Facultad de Ciencias Exactas y Naturales y Agrimensura. Departamento de Matemática; Argentina
Fil: Guzmán, Paulo Matias. Universidad Nacional del Nordeste. Facultad de Ciencias Exactas y Naturales y Agrimensura. Departamento de Matemática; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
description The purpose of this note is to generalize the Wazewski’s Topological Method 11, originally stated for ordinary differential equations, to the integro – differential equation of Volterra type (1), under suitable conditions on the functions involved.
publishDate 2015
dc.date.none.fl_str_mv 2015-11
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/39109
Napoles Valdes, Juan Eduardo; Velázquez, José R.; Lugo, Luciano Miguel; Guzmán, Paulo Matias; A note on the application of wazewski’s topological method to an integro: differential equation of volterra type; Scholars Academic and Scientific Publishers; Scholars Journal of Physics, Mathematics and Statistics; 2; 4; 11-2015; 377-382
2393-8056
2393-8064
CONICET Digital
CONICET
url http://hdl.handle.net/11336/39109
identifier_str_mv Napoles Valdes, Juan Eduardo; Velázquez, José R.; Lugo, Luciano Miguel; Guzmán, Paulo Matias; A note on the application of wazewski’s topological method to an integro: differential equation of volterra type; Scholars Academic and Scientific Publishers; Scholars Journal of Physics, Mathematics and Statistics; 2; 4; 11-2015; 377-382
2393-8056
2393-8064
CONICET Digital
CONICET
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/url/http://saspjournals.com/sjpms-24/
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
dc.publisher.none.fl_str_mv Scholars Academic and Scientific Publishers
publisher.none.fl_str_mv Scholars Academic and Scientific Publishers
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1846781895601291264
score 12.982451