Boundedness and compactness for commutators of singular integrals related to a critical radius function
- Autores
- Bongioanni, Bruno; Harboure, Eleonor Ofelia; Quijano, Pablo
- Año de publicación
- 2021
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- We work in the general framework of a family of singular integrals with kernels controlled in terms of a critical radius function ρ. This family models the harmonic analysis derived from the Schr¨odinger operator L = −∆ + V , where the non-negative potential V satisfies an appropriate reverse H¨older condition. For their commutators, we find sufficient conditions on the symbols for boundedness and/or compactness when acting on weighted Lp spaces. In all cases, the classes of symbols and weights are larger than their classical counterparts, BMO, CMO and Ap. When these general results are applied to the Schr¨odinger context, we obtain boundedness and compactness for commutators of operators like ∇L−1/2 , ∇2L−1 , V 1/2L−1/2 , V 1/2∇L−1 , V L−1 and Liα. As in Uchiyama’s classical paper, we give a full description of the class for compactness, CMO∞ρ , assuming ρ to be bounded. Finally, we provide examples showing that CMO is strictly contained in CMO∞ρ for any ρ, bounded or not.
Fil: Bongioanni, Bruno. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Matemática Aplicada del Litoral. Universidad Nacional del Litoral. Instituto de Matemática Aplicada del Litoral; Argentina
Fil: Harboure, Eleonor Ofelia. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Matemática Aplicada del Litoral. Universidad Nacional del Litoral. Instituto de Matemática Aplicada del Litoral; Argentina
Fil: Quijano, Pablo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Matemática Aplicada del Litoral. Universidad Nacional del Litoral. Instituto de Matemática Aplicada del Litoral; Argentina - Materia
- Boundedness
- Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/213464
Ver los metadatos del registro completo
id |
CONICETDig_48f663b0fc9f8ce75b483a95a8911e69 |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/213464 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Boundedness and compactness for commutators of singular integrals related to a critical radius functionBongioanni, BrunoHarboure, Eleonor OfeliaQuijano, PabloBoundednesshttps://purl.org/becyt/ford/1.1https://purl.org/becyt/ford/1We work in the general framework of a family of singular integrals with kernels controlled in terms of a critical radius function ρ. This family models the harmonic analysis derived from the Schr¨odinger operator L = −∆ + V , where the non-negative potential V satisfies an appropriate reverse H¨older condition. For their commutators, we find sufficient conditions on the symbols for boundedness and/or compactness when acting on weighted Lp spaces. In all cases, the classes of symbols and weights are larger than their classical counterparts, BMO, CMO and Ap. When these general results are applied to the Schr¨odinger context, we obtain boundedness and compactness for commutators of operators like ∇L−1/2 , ∇2L−1 , V 1/2L−1/2 , V 1/2∇L−1 , V L−1 and Liα. As in Uchiyama’s classical paper, we give a full description of the class for compactness, CMO∞ρ , assuming ρ to be bounded. Finally, we provide examples showing that CMO is strictly contained in CMO∞ρ for any ρ, bounded or not.Fil: Bongioanni, Bruno. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Matemática Aplicada del Litoral. Universidad Nacional del Litoral. Instituto de Matemática Aplicada del Litoral; ArgentinaFil: Harboure, Eleonor Ofelia. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Matemática Aplicada del Litoral. Universidad Nacional del Litoral. Instituto de Matemática Aplicada del Litoral; ArgentinaFil: Quijano, Pablo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Matemática Aplicada del Litoral. Universidad Nacional del Litoral. Instituto de Matemática Aplicada del Litoral; ArgentinaConsejo Nacional de Investigaciones Científicas y Técnicas. Instituto de Matemática Aplicada del Litoral2021-03info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/213464Bongioanni, Bruno; Harboure, Eleonor Ofelia; Quijano, Pablo; Boundedness and compactness for commutators of singular integrals related to a critical radius function; Consejo Nacional de Investigaciones Científicas y Técnicas. Instituto de Matemática Aplicada del Litoral; IMAL Preprints; 52; 3-2021; 1-282451-7100CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/https://imal.conicet.gov.ar/wp-content/uploads/sites/151/2021/07/2021-0052.pdfinfo:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-10T13:20:45Zoai:ri.conicet.gov.ar:11336/213464instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-10 13:20:46.069CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Boundedness and compactness for commutators of singular integrals related to a critical radius function |
title |
Boundedness and compactness for commutators of singular integrals related to a critical radius function |
spellingShingle |
Boundedness and compactness for commutators of singular integrals related to a critical radius function Bongioanni, Bruno Boundedness |
title_short |
Boundedness and compactness for commutators of singular integrals related to a critical radius function |
title_full |
Boundedness and compactness for commutators of singular integrals related to a critical radius function |
title_fullStr |
Boundedness and compactness for commutators of singular integrals related to a critical radius function |
title_full_unstemmed |
Boundedness and compactness for commutators of singular integrals related to a critical radius function |
title_sort |
Boundedness and compactness for commutators of singular integrals related to a critical radius function |
dc.creator.none.fl_str_mv |
Bongioanni, Bruno Harboure, Eleonor Ofelia Quijano, Pablo |
author |
Bongioanni, Bruno |
author_facet |
Bongioanni, Bruno Harboure, Eleonor Ofelia Quijano, Pablo |
author_role |
author |
author2 |
Harboure, Eleonor Ofelia Quijano, Pablo |
author2_role |
author author |
dc.subject.none.fl_str_mv |
Boundedness |
topic |
Boundedness |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.1 https://purl.org/becyt/ford/1 |
dc.description.none.fl_txt_mv |
We work in the general framework of a family of singular integrals with kernels controlled in terms of a critical radius function ρ. This family models the harmonic analysis derived from the Schr¨odinger operator L = −∆ + V , where the non-negative potential V satisfies an appropriate reverse H¨older condition. For their commutators, we find sufficient conditions on the symbols for boundedness and/or compactness when acting on weighted Lp spaces. In all cases, the classes of symbols and weights are larger than their classical counterparts, BMO, CMO and Ap. When these general results are applied to the Schr¨odinger context, we obtain boundedness and compactness for commutators of operators like ∇L−1/2 , ∇2L−1 , V 1/2L−1/2 , V 1/2∇L−1 , V L−1 and Liα. As in Uchiyama’s classical paper, we give a full description of the class for compactness, CMO∞ρ , assuming ρ to be bounded. Finally, we provide examples showing that CMO is strictly contained in CMO∞ρ for any ρ, bounded or not. Fil: Bongioanni, Bruno. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Matemática Aplicada del Litoral. Universidad Nacional del Litoral. Instituto de Matemática Aplicada del Litoral; Argentina Fil: Harboure, Eleonor Ofelia. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Matemática Aplicada del Litoral. Universidad Nacional del Litoral. Instituto de Matemática Aplicada del Litoral; Argentina Fil: Quijano, Pablo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Matemática Aplicada del Litoral. Universidad Nacional del Litoral. Instituto de Matemática Aplicada del Litoral; Argentina |
description |
We work in the general framework of a family of singular integrals with kernels controlled in terms of a critical radius function ρ. This family models the harmonic analysis derived from the Schr¨odinger operator L = −∆ + V , where the non-negative potential V satisfies an appropriate reverse H¨older condition. For their commutators, we find sufficient conditions on the symbols for boundedness and/or compactness when acting on weighted Lp spaces. In all cases, the classes of symbols and weights are larger than their classical counterparts, BMO, CMO and Ap. When these general results are applied to the Schr¨odinger context, we obtain boundedness and compactness for commutators of operators like ∇L−1/2 , ∇2L−1 , V 1/2L−1/2 , V 1/2∇L−1 , V L−1 and Liα. As in Uchiyama’s classical paper, we give a full description of the class for compactness, CMO∞ρ , assuming ρ to be bounded. Finally, we provide examples showing that CMO is strictly contained in CMO∞ρ for any ρ, bounded or not. |
publishDate |
2021 |
dc.date.none.fl_str_mv |
2021-03 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/213464 Bongioanni, Bruno; Harboure, Eleonor Ofelia; Quijano, Pablo; Boundedness and compactness for commutators of singular integrals related to a critical radius function; Consejo Nacional de Investigaciones Científicas y Técnicas. Instituto de Matemática Aplicada del Litoral; IMAL Preprints; 52; 3-2021; 1-28 2451-7100 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/213464 |
identifier_str_mv |
Bongioanni, Bruno; Harboure, Eleonor Ofelia; Quijano, Pablo; Boundedness and compactness for commutators of singular integrals related to a critical radius function; Consejo Nacional de Investigaciones Científicas y Técnicas. Instituto de Matemática Aplicada del Litoral; IMAL Preprints; 52; 3-2021; 1-28 2451-7100 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/url/https://imal.conicet.gov.ar/wp-content/uploads/sites/151/2021/07/2021-0052.pdf |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
Consejo Nacional de Investigaciones Científicas y Técnicas. Instituto de Matemática Aplicada del Litoral |
publisher.none.fl_str_mv |
Consejo Nacional de Investigaciones Científicas y Técnicas. Instituto de Matemática Aplicada del Litoral |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1842981135983837184 |
score |
12.48226 |