Distinguishability notion based on Wootters statistical distance: Application to discrete maps

Autores
Gomez, Ignacio Sebastián; Portesi, Mariela Adelina; Lamberti, Pedro Walter
Año de publicación
2017
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
We study the distinguishability notion given by Wootters for states represented by probability density functions. This presents the particularity that it can also be used for defining a statistical distance in chaotic unidimensional maps. Based on that definition, we provide a metric d for an arbitrary discrete map. Moreover, from d, we associate a metric space with each invariant density of a given map, which results to be the set of all distinguished points when the number of iterations of the map tends to infinity. Also, we give a characterization of the wandering set of a map in terms of the metric d, which allows us to identify the dissipative regions in the phase space. We illustrate the results in the case of the logistic and the circle maps numerically and analytically, and we obtain d and the wandering set for some characteristic values of their parameters. Finally, an extension of the metric space associated for arbitrary probability distributions (not necessarily invariant densities) is given along with some consequences. The statistical properties of distributions given by histograms are characterized in terms of the cardinal of the associated metric space. For two conjugate variables, the uncertainty principle is expressed in terms of the diameters of the associated metric space with those variables.
Fil: Gomez, Ignacio Sebastián. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Física La Plata. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Instituto de Física La Plata; Argentina
Fil: Portesi, Mariela Adelina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Física La Plata. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Instituto de Física La Plata; Argentina
Fil: Lamberti, Pedro Walter. Universidad Nacional de Córdoba. Facultad de Matemática, Astronomía y Física; Argentina
Materia
Distinguishability
Statistical distance
Discrete maps
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/65842

id CONICETDig_821cc3b9252658855325c8e888a41be3
oai_identifier_str oai:ri.conicet.gov.ar:11336/65842
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling Distinguishability notion based on Wootters statistical distance: Application to discrete mapsGomez, Ignacio SebastiánPortesi, Mariela AdelinaLamberti, Pedro WalterDistinguishabilityStatistical distanceDiscrete mapshttps://purl.org/becyt/ford/1.3https://purl.org/becyt/ford/1We study the distinguishability notion given by Wootters for states represented by probability density functions. This presents the particularity that it can also be used for defining a statistical distance in chaotic unidimensional maps. Based on that definition, we provide a metric d for an arbitrary discrete map. Moreover, from d, we associate a metric space with each invariant density of a given map, which results to be the set of all distinguished points when the number of iterations of the map tends to infinity. Also, we give a characterization of the wandering set of a map in terms of the metric d, which allows us to identify the dissipative regions in the phase space. We illustrate the results in the case of the logistic and the circle maps numerically and analytically, and we obtain d and the wandering set for some characteristic values of their parameters. Finally, an extension of the metric space associated for arbitrary probability distributions (not necessarily invariant densities) is given along with some consequences. The statistical properties of distributions given by histograms are characterized in terms of the cardinal of the associated metric space. For two conjugate variables, the uncertainty principle is expressed in terms of the diameters of the associated metric space with those variables.Fil: Gomez, Ignacio Sebastián. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Física La Plata. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Instituto de Física La Plata; ArgentinaFil: Portesi, Mariela Adelina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Física La Plata. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Instituto de Física La Plata; ArgentinaFil: Lamberti, Pedro Walter. Universidad Nacional de Córdoba. Facultad de Matemática, Astronomía y Física; ArgentinaAmerican Institute of Physics2017-08info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/65842Gomez, Ignacio Sebastián; Portesi, Mariela Adelina; Lamberti, Pedro Walter; Distinguishability notion based on Wootters statistical distance: Application to discrete maps; American Institute of Physics; Chaos; 27; 8; 8-20171054-15001089-7682CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/aip.scitation.org/doi/full/10.1063/1.4998141info:eu-repo/semantics/altIdentifier/doi/10.1063/1.4998141info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T10:33:58Zoai:ri.conicet.gov.ar:11336/65842instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 10:33:58.852CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv Distinguishability notion based on Wootters statistical distance: Application to discrete maps
title Distinguishability notion based on Wootters statistical distance: Application to discrete maps
spellingShingle Distinguishability notion based on Wootters statistical distance: Application to discrete maps
Gomez, Ignacio Sebastián
Distinguishability
Statistical distance
Discrete maps
title_short Distinguishability notion based on Wootters statistical distance: Application to discrete maps
title_full Distinguishability notion based on Wootters statistical distance: Application to discrete maps
title_fullStr Distinguishability notion based on Wootters statistical distance: Application to discrete maps
title_full_unstemmed Distinguishability notion based on Wootters statistical distance: Application to discrete maps
title_sort Distinguishability notion based on Wootters statistical distance: Application to discrete maps
dc.creator.none.fl_str_mv Gomez, Ignacio Sebastián
Portesi, Mariela Adelina
Lamberti, Pedro Walter
author Gomez, Ignacio Sebastián
author_facet Gomez, Ignacio Sebastián
Portesi, Mariela Adelina
Lamberti, Pedro Walter
author_role author
author2 Portesi, Mariela Adelina
Lamberti, Pedro Walter
author2_role author
author
dc.subject.none.fl_str_mv Distinguishability
Statistical distance
Discrete maps
topic Distinguishability
Statistical distance
Discrete maps
purl_subject.fl_str_mv https://purl.org/becyt/ford/1.3
https://purl.org/becyt/ford/1
dc.description.none.fl_txt_mv We study the distinguishability notion given by Wootters for states represented by probability density functions. This presents the particularity that it can also be used for defining a statistical distance in chaotic unidimensional maps. Based on that definition, we provide a metric d for an arbitrary discrete map. Moreover, from d, we associate a metric space with each invariant density of a given map, which results to be the set of all distinguished points when the number of iterations of the map tends to infinity. Also, we give a characterization of the wandering set of a map in terms of the metric d, which allows us to identify the dissipative regions in the phase space. We illustrate the results in the case of the logistic and the circle maps numerically and analytically, and we obtain d and the wandering set for some characteristic values of their parameters. Finally, an extension of the metric space associated for arbitrary probability distributions (not necessarily invariant densities) is given along with some consequences. The statistical properties of distributions given by histograms are characterized in terms of the cardinal of the associated metric space. For two conjugate variables, the uncertainty principle is expressed in terms of the diameters of the associated metric space with those variables.
Fil: Gomez, Ignacio Sebastián. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Física La Plata. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Instituto de Física La Plata; Argentina
Fil: Portesi, Mariela Adelina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Física La Plata. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Instituto de Física La Plata; Argentina
Fil: Lamberti, Pedro Walter. Universidad Nacional de Córdoba. Facultad de Matemática, Astronomía y Física; Argentina
description We study the distinguishability notion given by Wootters for states represented by probability density functions. This presents the particularity that it can also be used for defining a statistical distance in chaotic unidimensional maps. Based on that definition, we provide a metric d for an arbitrary discrete map. Moreover, from d, we associate a metric space with each invariant density of a given map, which results to be the set of all distinguished points when the number of iterations of the map tends to infinity. Also, we give a characterization of the wandering set of a map in terms of the metric d, which allows us to identify the dissipative regions in the phase space. We illustrate the results in the case of the logistic and the circle maps numerically and analytically, and we obtain d and the wandering set for some characteristic values of their parameters. Finally, an extension of the metric space associated for arbitrary probability distributions (not necessarily invariant densities) is given along with some consequences. The statistical properties of distributions given by histograms are characterized in terms of the cardinal of the associated metric space. For two conjugate variables, the uncertainty principle is expressed in terms of the diameters of the associated metric space with those variables.
publishDate 2017
dc.date.none.fl_str_mv 2017-08
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/65842
Gomez, Ignacio Sebastián; Portesi, Mariela Adelina; Lamberti, Pedro Walter; Distinguishability notion based on Wootters statistical distance: Application to discrete maps; American Institute of Physics; Chaos; 27; 8; 8-2017
1054-1500
1089-7682
CONICET Digital
CONICET
url http://hdl.handle.net/11336/65842
identifier_str_mv Gomez, Ignacio Sebastián; Portesi, Mariela Adelina; Lamberti, Pedro Walter; Distinguishability notion based on Wootters statistical distance: Application to discrete maps; American Institute of Physics; Chaos; 27; 8; 8-2017
1054-1500
1089-7682
CONICET Digital
CONICET
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/url/aip.scitation.org/doi/full/10.1063/1.4998141
info:eu-repo/semantics/altIdentifier/doi/10.1063/1.4998141
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
application/pdf
application/pdf
dc.publisher.none.fl_str_mv American Institute of Physics
publisher.none.fl_str_mv American Institute of Physics
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1844614355644055552
score 13.070432